Scientists from The Open University (OU) have discovered a process that could explain the long-debated mystery of how land features on Mars are formed in the absence of significant amounts of water.
This means that, in comparison to Planet Earth, relatively small amounts of liquid water moving across Mars' surface could form the large dune flows, gullies and other features, which characterise the Red Planet.
Dr Jan Raack, Marie Skłodowska-Curie Research Fellow at The Open University, is lead author of the research; he said:
![]() |
The Cliffs of Rover resembling an ocean beating against cliffs [Credit: NASA/JPL-Caltech/MSSS] |
"Our research has discovered that this levitation effect caused by boiling water under low pressure enables the rapid transport of sand and sediment across the surface. This is a new geological phenomenon, which doesn't happen on Earth, and could be vital to understanding similar processes on other planetary surfaces."
Dr Raack conducted these experiments in the Hypervelocity Impact (HVI) Laboratory based at the OU. He added:
"The sources of this liquid water will require more observational studies; however, the research shows that the effects of relatively small amounts of water on Mars in forming features on the surface may have been widely underestimated.
"We need to carry out more research into how water levitates on Mars, and missions such as the ESA ExoMars 2020 Rover will provide vital insight to help us better understand our closest neighbour."
The study is published in Nature Communications.
Source: Open University [October 27, 2017]