Poland, Ukraine. Citation of book: Ostroumov S.A. (2001) Biological effects of surfactants. MAX Press, Moscow; Остроумов С.А. The book was cited in: Goncharuk et al. (2017) Effect of Ethonium Adsorption on Structure Formation in Nanosilica Dispersions. Nano Research & Applications (Nano Res Appl), Vol.3 No.3:29;
https://5bio5.blogspot.com/2018/01/citation_23.html
** About the cited book:
Биологические эффекты при воздействии поверхностно-активных веществ на организмы; https://www.researchgate.net/publication/266193942; Biological Effects of Surfactants on Organisms / Biologicheskie effekty pri vozdeistvii poverkhnostno-aktivnykh
**
**
This book was cited in the article of Polish scientists:
https://5bio5.blogspot.com/2018/01/citation_23.html
** About the cited book:
Биологические эффекты при воздействии поверхностно-активных веществ на организмы; https://www.researchgate.net/publication/266193942; Biological Effects of Surfactants on Organisms / Biologicheskie effekty pri vozdeistvii poverkhnostno-aktivnykh
https://www.researchgate.net/publication/283420752 ; Биологические эффекты при воздействии поверхностно-активных веществ на организмы ( Остроумов С.А., Москва, МАКС-Пресс, 2001, 334 c.). Книга. Список таблиц в этой книге. Книга. Остроумов С.А. Биологические эффекты при воздействии поверхностно-активных веществ на организм (М., МАКС-Пресс, 2001, 334 c.). Коротко о книге и таблицах: даны результаты нового экспериментального изучения биологических эффектов ПАВ, ПАВ-содержащих смесевых и других препаратов на одноклеточные и многоклеточные организмы. Приведены результаты новых опытов автора по биотестированию. Так, изучено воздействие тестируемых веществ - ПАВ и смесевых препаратов, содержащих ПАВ (таких, как синтетические моющие средства – СМС и ЖМС, жидких моющих средств) на фитопланктон, покрытосеменные растения, на пресноводных моллюсков, морских моллюсков и др. организмы. Анализ экологического значения полученных результатов по-новому раскрыл опасность поллютантов для функционирования экосистем и качества воды. По оценкам, на каждого жителя РФ приходится существенное количество СПАВ, попадающих ежедневно в канализационную сеть - в основном в результате использования СМС и ПМС. Эта цифра составляет около 2 г на 1 человека в день (Акулова, Буштуева, 1986). В ряде стран аналогичный показатель еще выше – в ФРГ свыше 11 г (Steinberg et al., 1995; цит. по Остроумов, 2000 г). Список таблиц. List of tables. book: Биологические эффекты при воздействии поверхностно-активных веществ на организм (М., МАКС-Пресс, 2001, 334 c.). Ниже дается список таблиц книги «Биологические эффекты при воздействии поверхностно-активных веществ на организм». (продолжение и весь список в прилагаемом файле). Список приведен здесь: https://www.researchgate.net/publication/283420752. Дальнейшее развитие результатов и идей, изложенных в книге - см. http://scipeople.ru/publication/99212/ http://scipeople.com/publication/70283/ (Краткий обзор новых концептуальных разработок); См. также книгу S.A.Ostroumov 'Biological Effects of Surfactants' (CRC Press). Изложенные в книге рез-ты автора признаны открытием: http://scipeople.com/publication/69550/ Ключевые слова публикации: Список таблиц. Таблицы к главе 1. Таблица 1.1. Количество публикаций о роли ПАВ, пестицидов и металлов как загрязнителей водной среды, отреферированных в РЖ (выпуск “Общая экология. Биоценология. Гидробиология”). Табл. 1.2. Свидетельства недостаточной изученности роли СПАВ и недооценки их экологической опасности как загрязнителей среды Табл 1.3. Количество загрязняющих веществ, сброшенных в водоемы г. Москвы в 1992-1996 гг (тыс. т). Рост поступления в водоемы СПАВ на фоне снижения поступления других загрязняющих веществ (Отставнова, Курмакаев, 1997) Таблицы к главе 2. Табл. 2.1. КМ некоторых СПАВ (по Абрамзон, Гаевой, 1979; каталоги фирм-производителей и поставщиков ПАВ). Табл. 2.2. Состав СМС “Био-С” Табл. 2.3. Состав СМС “Кристалл” Табл. 2.4. Состав моющего средства “Каштан” (ПАВ ок. 24%) Таблицы к главе 3. Табл 3.1. Оценка средней длины (x, мм) проростков Fagopyrum esculentum при разных концентрациях ДСН (вариант методики: без переноса проростков) Табл 3.2 Усредненные результаты трех опытов по определению средн. длины (x, мм) проростков Fagopyrum esculentum при разных концентрациях ДСН ; продолжение списка здесь: https://www.researchgate.net/publication/283420752; Ключевые слова публикации: таблицы, книга, book, "Биологические эффекты при воздействии поверхностно-активных веществ на организм", ПАВ, АПАВ, НПАВ КПАВ, экологическая опасность, поллютанты, биотестирование, синтетические, моющие, средства, СМС, жидкие моющие средства, ПАВ-содержащие,
Book review. Revolutionary progress in ecotoxicology. On the book, Biological Effects of Surfactants on Organisms. MAX Press, Moscow. Author of the book: S.A.Ostroumov. Биологические эффекты при воздействии поверхностно-активных веществ на организмы. https://www.researchgate.net/publication/303790274;
**
This book was cited in the article of Polish scientists:
[PDF] Effect of Ethonium Adsorption on Structure Formation in Nanosilica Dispersions
O Goncharuk, VM Gunko, A Ugnivenko, K Terpilowski… - Nano Res Appl, 2017
Abstract:
Adsorption of ethonium on silica surface strongly affects the particle size
distribution, stability and rheological properties of aqueous dispersions of fumed silica. The
S-shape of isotherm of ethonium adsorption on nanosilica suggests the multilayer...;
Effect of Ethonium Adsorption on Structure Formation in Nanosilica Dispersions.
Olena Goncharuk 1* , Vladimir M Gunko 1 , Andriy Ugnivenko 2 , Konrad Terpilowski 3 , Ewa Skwarek 3, and Wladyslaw Janusz 3
Affiliation:
1 Chuiko Institute of Surface Chemistry, 17 General Naumov Street, 03164 Kyiv, Ukraine;
2 Department for Biotechnical Problems of Diagnostic, Institute for problems of Cryobiology and Cryomedicine, NAS of Ukraine, Prospect Nauky 42/1, Kyiv 03028, Ukraine;
3 Faculty of Chemistry, Maria Curie-Skłodowska University, 20-031 Lublin, Poland;
* Corresponding author: Olena Goncharuk, Chuiko Institute of Surface Chemistry, 17 General Naumov Street, 03164 Kyiv, Ukraine, Tel: +380930922804; E-mail: iscgoncharuk@meta.ua;
Rec date: Aug 23, 2017; Acc date: Dec 4, 2017; Pub date: Dec 6, 2017
Citation: Goncharuk O, Gunko VM, Ugnivenko A, Terpilowski K, Skwarek E, et al. (2017) Effect of Ethonium Adsorption on Structure Formation in Nanosilica Dispersions. Nano Research & Applications (Nano Res Appl), Vol.3 No.3:29;
Abstract Adsorption of ethonium on silica surface strongly affects the particle size distribution, stability and rheological properties of aqueous dispersions of fumed silica. The S- shape of isotherm of ethonium adsorption on nanosilica suggests the multilayer adsorption. The adsorption of ethonium leads to changes in the shape of the pH- dependence of the zeta-potential and a significant increase in the particle sizes in the aqueous dispersions of silica. A marked increase in the colloidal stability is observed for the dispersions at silica concentration of 5 wt.%, while for 1 wt.% dispersions the ethonium presence almost does not affect the stability. The rheological properties of the dispersions depend on the ethonium concentration, and the maximum values of the viscosity and rheopectic behavior are observed at ethonium concentration of 0.1-0.3 wt.%. Keywords : Ethonium adsorption, Silica dispersion, Particle size distribution, Сolloidal stability, Rheological properties,
Keywords of the article: Ethonium, adsorption, Silica dispersion, Particle size distribution, Сolloidal stability, Rheological properties,
Adsorption of ethonium on silica surface strongly affects the particle size
distribution, stability and rheological properties of aqueous dispersions of fumed silica. The
S-shape of isotherm of ethonium adsorption on nanosilica suggests the multilayer...;
Effect of Ethonium Adsorption on Structure Formation in Nanosilica Dispersions.
Olena Goncharuk 1* , Vladimir M Gunko 1 , Andriy Ugnivenko 2 , Konrad Terpilowski 3 , Ewa Skwarek 3, and Wladyslaw Janusz 3
Affiliation:
1 Chuiko Institute of Surface Chemistry, 17 General Naumov Street, 03164 Kyiv, Ukraine;
2 Department for Biotechnical Problems of Diagnostic, Institute for problems of Cryobiology and Cryomedicine, NAS of Ukraine, Prospect Nauky 42/1, Kyiv 03028, Ukraine;
3 Faculty of Chemistry, Maria Curie-Skłodowska University, 20-031 Lublin, Poland;
* Corresponding author: Olena Goncharuk, Chuiko Institute of Surface Chemistry, 17 General Naumov Street, 03164 Kyiv, Ukraine, Tel: +380930922804; E-mail: iscgoncharuk@meta.ua;
Rec date: Aug 23, 2017; Acc date: Dec 4, 2017; Pub date: Dec 6, 2017
Citation: Goncharuk O, Gunko VM, Ugnivenko A, Terpilowski K, Skwarek E, et al. (2017) Effect of Ethonium Adsorption on Structure Formation in Nanosilica Dispersions. Nano Research & Applications (Nano Res Appl), Vol.3 No.3:29;
Abstract Adsorption of ethonium on silica surface strongly affects the particle size distribution, stability and rheological properties of aqueous dispersions of fumed silica. The S- shape of isotherm of ethonium adsorption on nanosilica suggests the multilayer adsorption. The adsorption of ethonium leads to changes in the shape of the pH- dependence of the zeta-potential and a significant increase in the particle sizes in the aqueous dispersions of silica. A marked increase in the colloidal stability is observed for the dispersions at silica concentration of 5 wt.%, while for 1 wt.% dispersions the ethonium presence almost does not affect the stability. The rheological properties of the dispersions depend on the ethonium concentration, and the maximum values of the viscosity and rheopectic behavior are observed at ethonium concentration of 0.1-0.3 wt.%. Keywords : Ethonium adsorption, Silica dispersion, Particle size distribution, Сolloidal stability, Rheological properties,
Keywords of the article: Ethonium, adsorption, Silica dispersion, Particle size distribution, Сolloidal stability, Rheological properties,
Ethonium
(aethonium,
1,2-bis[dimethyl(decyloxycarbonylmethyl)aminio] ethane-
dichloride )
**
References
1. Shukla D, Tyagi VK (2006) Cationic gemini surfactants: a review. J Oleo Sci 55: 381-390.
2. Ostroumov SA (2001) Biological effects of surfactants. MAX Press, Moscow.
3. Tawfik SM, Abd-Elaal AA, Shaban SM, Roshdy AA (2015) Surface, thermodynamic and biological activities of some synthesized gemini quaternary ammonium salts based on polyethylene glycol. J Ind Eng Chem 30: 112-119. 4. Espert A, Klitzing R, Poulin P, Colin A, Zana R, et al. (1998) Behavior of soap films stabilized by a cationic dimeric surfactant. Langmuir 14: 4251–4260. 5. Rosen MJ, Tracy DJ (1998) Gemini surfactants. J Surf Deterg 1: 547-554. 6. Kumar N, Tyagi R (2014) Industrial applications of dimeric surfactants: A review. J Disp Sci Technol 35: 205-214. 7. Rosen MJ (1999) Geminis: A new generation of surfactants. Prog Chem 11: 338-357. 8. Somasundaran P, Huang L (2000) Adsorption/aggregation of surfactants and their mixtures at solid–liquid interfaces. Adv Colloid Interface Sci 88: 179-208. 9. Derjaguin BV, Voropayeva TN (1964) Surface forces and the stability of colloids and disperse systems. J Colloid Sci 19: 113-135. 10. Adamson AW (1990) Physical chemistry of surfaces. Wiley, New York, USA. 11. Yalçın T, Alemdar A, Ece ÖI, Güngör N (2002) The viscosity and zeta potential of bentonite dispersions in presence of anionic surfactants. Mater Let 57: 420–424. 12. Pertsovskii AI, Kononova NS, Chukreeva LN (1990) The use of ethonium as an angioprotector in treating experimental atherosclerosis. Vrach Delo 4: 103-104. 13. Petrunyk IO (2000) Increased antibacterial activity of antibiotics with etonium in vitro. Mikrobiol Zhurn 62: 43-46. 14. Babak OI, Kushnir IE (1996) Ethonium in the treatment of patients with gastric and duodenal peptic ulcers. Lik Sprava 3-4: 123-125. 15. Gun'ko VM, Mironyuk IF, Zarko VI, Voronin EF, Turov VV, et al. (2005) Morphology and surface properties of fumed silicas. J Colloid Interface Sci 289: 427-445. 16. Gun'ko VM, Mironyuk IF, Zarko VI, Turov VV, Voronin EF, et al. (2001) Fumed silicas possessing different morphology and hydrophilicity. J Colloid Interface Sci 242: 90-103. 17. Eggersdorfer ML, Kadau D, Herrmann HJ, Pratsinis SE (2012) Aggregate morphology evolution by sintering: Number and diameter of primary particles. J Aerosol Sci. 46: 7–19. 18. Zhebentyaev AI (1982) A method of ethonium determinig. S.U. Patent No. 958931. Nano Research & Applications ISSN 2471-9838 Vol.3 No.3:29 2017 6 This article is available from: http://nanotechnology.imedpub.com/ 19. Gun’ko VM, Zarko VI, Leboda R, Chibowski E (2001) Aqueous suspension of fumed oxides: particle size distribution and zeta potential. Adv Colloid Interface Sci 91: 1–112. 20. Wiśniewska M, Terpiłowski K, Chibowski S, Urban T, Zarko VI, e t al. (2013) Effect of polyacrylic acid (PAA) adsorption on stability of mixed alumina - silica oxide suspension. Powder Tech 233: 190–200. 21. Wiśniewska M (2013) Possibilities of colloidal silica separation from water suspension in the polyethylene glycol (PEG). Presence at different temperatures. Separation Sci Technol 48: 1073-1080. 22. Wiśniewska M, Terpiłowski K, Chibowski S, Urban T, Zarko VI, e t al. (2013) Stability of colloidal silica modified by macromolecular polyacrylic acid (PAA) – Application of turbidymetry method. J Macromolecular Sci. Part A: Pure and Applied Chemistry 50: 639-643. 23. Parfitt GD, Rochester CH (1983) Adsorption from solution at the solid/liquid interface. Academic press, London 24. Davydenko N, Shevchenko NM, Vlasova NN, Bogomaz VI, Chuiko AA (1992) Ethonium adsorption on the surface of highly dispersed silica. Russian Journal of Physical Chemistry 66: 2778– 2780. 25. Paria S, Khilar KC (2004) A review on experimental studies of surfactant adsorption at the hydrophilic solid–water interface . Adv Colloid Interface Sci 110: 75-95. 26. Lide DR (2003) CRC handbook of chemistry and physics. CRC Press, Boca Raton. 27. Iler RK (1982) The chemistry of silica, Part 1. Wiley, New York , USA. 28. Mikhailova IV, Gerashchenko II (2001) Adsorption of cationic surfactants on highly dispersed silica. Colloid J. 63: 437-440. 29. Dylla-Spears R, Wong L, Miller PE, Feit MD, Steele W, et al. (2014) Charged micelle halo mechanism for agglomeration reduction in metal oxide particle based polishing slurries. Colloids Surf A: Physicochem. Eng Asp 447: 32-43. 30. Du X, Wang X, You S, Wang Q, Gong X (2015) A case study of aggregation behaviors of titanium dioxide nanoparticles in the presence of dodecylbenzene sulfonate in natural water. J Environmental Sci. 36: 84-92. 31. Grządka E (2012) The adsorption layer in the system: Carboxymethylcellulose/Surfactants/NaCl/MnO 2 . J Surfactants Deterg 15: 513–521. 32. Rehbinder PA (1958) Formation and aggregative stability of disperse systems. Colloid J USSR 20: 493-502.
**
References
1. Shukla D, Tyagi VK (2006) Cationic gemini surfactants: a review. J Oleo Sci 55: 381-390.
2. Ostroumov SA (2001) Biological effects of surfactants. MAX Press, Moscow.
3. Tawfik SM, Abd-Elaal AA, Shaban SM, Roshdy AA (2015) Surface, thermodynamic and biological activities of some synthesized gemini quaternary ammonium salts based on polyethylene glycol. J Ind Eng Chem 30: 112-119. 4. Espert A, Klitzing R, Poulin P, Colin A, Zana R, et al. (1998) Behavior of soap films stabilized by a cationic dimeric surfactant. Langmuir 14: 4251–4260. 5. Rosen MJ, Tracy DJ (1998) Gemini surfactants. J Surf Deterg 1: 547-554. 6. Kumar N, Tyagi R (2014) Industrial applications of dimeric surfactants: A review. J Disp Sci Technol 35: 205-214. 7. Rosen MJ (1999) Geminis: A new generation of surfactants. Prog Chem 11: 338-357. 8. Somasundaran P, Huang L (2000) Adsorption/aggregation of surfactants and their mixtures at solid–liquid interfaces. Adv Colloid Interface Sci 88: 179-208. 9. Derjaguin BV, Voropayeva TN (1964) Surface forces and the stability of colloids and disperse systems. J Colloid Sci 19: 113-135. 10. Adamson AW (1990) Physical chemistry of surfaces. Wiley, New York, USA. 11. Yalçın T, Alemdar A, Ece ÖI, Güngör N (2002) The viscosity and zeta potential of bentonite dispersions in presence of anionic surfactants. Mater Let 57: 420–424. 12. Pertsovskii AI, Kononova NS, Chukreeva LN (1990) The use of ethonium as an angioprotector in treating experimental atherosclerosis. Vrach Delo 4: 103-104. 13. Petrunyk IO (2000) Increased antibacterial activity of antibiotics with etonium in vitro. Mikrobiol Zhurn 62: 43-46. 14. Babak OI, Kushnir IE (1996) Ethonium in the treatment of patients with gastric and duodenal peptic ulcers. Lik Sprava 3-4: 123-125. 15. Gun'ko VM, Mironyuk IF, Zarko VI, Voronin EF, Turov VV, et al. (2005) Morphology and surface properties of fumed silicas. J Colloid Interface Sci 289: 427-445. 16. Gun'ko VM, Mironyuk IF, Zarko VI, Turov VV, Voronin EF, et al. (2001) Fumed silicas possessing different morphology and hydrophilicity. J Colloid Interface Sci 242: 90-103. 17. Eggersdorfer ML, Kadau D, Herrmann HJ, Pratsinis SE (2012) Aggregate morphology evolution by sintering: Number and diameter of primary particles. J Aerosol Sci. 46: 7–19. 18. Zhebentyaev AI (1982) A method of ethonium determinig. S.U. Patent No. 958931. Nano Research & Applications ISSN 2471-9838 Vol.3 No.3:29 2017 6 This article is available from: http://nanotechnology.imedpub.com/ 19. Gun’ko VM, Zarko VI, Leboda R, Chibowski E (2001) Aqueous suspension of fumed oxides: particle size distribution and zeta potential. Adv Colloid Interface Sci 91: 1–112. 20. Wiśniewska M, Terpiłowski K, Chibowski S, Urban T, Zarko VI, e t al. (2013) Effect of polyacrylic acid (PAA) adsorption on stability of mixed alumina - silica oxide suspension. Powder Tech 233: 190–200. 21. Wiśniewska M (2013) Possibilities of colloidal silica separation from water suspension in the polyethylene glycol (PEG). Presence at different temperatures. Separation Sci Technol 48: 1073-1080. 22. Wiśniewska M, Terpiłowski K, Chibowski S, Urban T, Zarko VI, e t al. (2013) Stability of colloidal silica modified by macromolecular polyacrylic acid (PAA) – Application of turbidymetry method. J Macromolecular Sci. Part A: Pure and Applied Chemistry 50: 639-643. 23. Parfitt GD, Rochester CH (1983) Adsorption from solution at the solid/liquid interface. Academic press, London 24. Davydenko N, Shevchenko NM, Vlasova NN, Bogomaz VI, Chuiko AA (1992) Ethonium adsorption on the surface of highly dispersed silica. Russian Journal of Physical Chemistry 66: 2778– 2780. 25. Paria S, Khilar KC (2004) A review on experimental studies of surfactant adsorption at the hydrophilic solid–water interface . Adv Colloid Interface Sci 110: 75-95. 26. Lide DR (2003) CRC handbook of chemistry and physics. CRC Press, Boca Raton. 27. Iler RK (1982) The chemistry of silica, Part 1. Wiley, New York , USA. 28. Mikhailova IV, Gerashchenko II (2001) Adsorption of cationic surfactants on highly dispersed silica. Colloid J. 63: 437-440. 29. Dylla-Spears R, Wong L, Miller PE, Feit MD, Steele W, et al. (2014) Charged micelle halo mechanism for agglomeration reduction in metal oxide particle based polishing slurries. Colloids Surf A: Physicochem. Eng Asp 447: 32-43. 30. Du X, Wang X, You S, Wang Q, Gong X (2015) A case study of aggregation behaviors of titanium dioxide nanoparticles in the presence of dodecylbenzene sulfonate in natural water. J Environmental Sci. 36: 84-92. 31. Grządka E (2012) The adsorption layer in the system: Carboxymethylcellulose/Surfactants/NaCl/MnO 2 . J Surfactants Deterg 15: 513–521. 32. Rehbinder PA (1958) Formation and aggregative stability of disperse systems. Colloid J USSR 20: 493-502.
**
References (another format):
1.
Shukla D, Tyagi VK (2006)
Cationic
gemini surfactants: a review. J
Oleo Sci 55: 381-390.
2.
Ostroumov SA (2001) Biological
effects
of surfactants. MAX
Press, Moscow.
3.
Tawfik
SM, Abd-Elaal AA, Shaban SM, Roshdy AA (2015) Surface,
thermodynamic and biological
activities
of some synthesized
gemini quaternary ammonium salts based on polyethylene
glycol. J Ind Eng Chem 30: 112-119.
4.
Espert A, Klitzing R, Poulin P, Colin A, Zana R, et al.
(1998)
Behavior of soap
films
stabilized by a
cationic
dimeric surfactant.
Langmuir 14: 4251–4260.
5.
Rosen MJ, Tracy DJ (1998) Gemini surfactants. J Surf Deterg 1:
547-554.
6.
Kumar N, Tyagi R (2014) Industrial
applications
of dimeric
surfactants: A review. J Disp Sci Technol 35: 205-214.
7.
Rosen MJ (1999) Geminis: A new
generation
of surfactants. Prog
Chem 11: 338-357.
8.
Somasundaran P, Huang L (2000)
Adsorption/aggregation
of
surfactants and their mixtures at solid–liquid interfaces. Adv
Colloid Interface Sci 88: 179-208.
9.
Derjaguin BV, Voropayeva TN (1964) Surface forces and the
stability of colloids and disperse systems. J Colloid Sci 19:
113-135.
10.
Adamson AW (1990) Physical chemistry of surfaces. Wiley, New
York, USA.
11.
Yalçın T, Alemdar A, Ece ÖI, Güngör N (2002) The viscosity and
zeta
potential
of bentonite dispersions in presence of anionic
surfactants. Mater Let 57: 420–424.
12.
Pertsovskii AI, Kononova NS, Chukreeva LN (1990) The use of
ethonium as an angioprotector in
treating
experimental
atherosclerosis. Vrach Delo 4: 103-104.
13.
Petrunyk IO (2000) Increased
antibacterial
activity
of
antibiotics
with etonium
in vitro.
Mikrobiol Zhurn 62: 43-46.
14.
Babak OI, Kushnir IE (1996) Ethonium in the treatment of
patients
with gastric and duodenal
peptic
ulcers. Lik Sprava
3-4:
123-125.
15.
Gun'ko VM, Mironyuk IF, Zarko VI, Voronin EF, Turov VV, et al.
(2005) Morphology and surface
properties
of fumed silicas. J
Colloid Interface Sci 289: 427-445.
16.
Gun'ko VM, Mironyuk IF, Zarko VI, Turov VV, Voronin EF, et al.
(2001) Fumed silicas possessing
different
morphology and
hydrophilicity. J Colloid Interface Sci 242: 90-103.
17.
Eggersdorfer ML, Kadau D, Herrmann HJ, Pratsinis SE (2012)
Aggregate morphology
evolution
by sintering: Number and
diameter of primary
particles.
J Aerosol Sci. 46: 7–19.
18.
Zhebentyaev AI (1982) A method of ethonium determinig. S.U.
Patent No. 958931.
Nano Research & Applications
ISSN 2471-9838
Vol.3 No.3:29
2017
6
This article is available from:
http://nanotechnology.imedpub.com/
19.
19.
Gun’ko VM, Zarko VI, Leboda R, Chibowski E (2001) Aqueous
suspension of fumed oxides:
particle
size
distribution
and zeta
potential.
Adv Colloid Interface Sci 91: 1–112.
20.
Wiśniewska M, Terpiłowski K, Chibowski S, Urban T, Zarko VI, et
al. (2013)
Effect
of polyacrylic acid (PAA)
adsorption
on stability
of mixed alumina - silica oxide suspension. Powder Tech 233:
190–200.
21.
Wiśniewska M (2013)
Possibilities
of colloidal silica
separation
from water suspension in the polyethylene glycol (PEG).
Presence at
different
temperatures.
Separation
Sci Technol 48:
1073-1080.
22.
Wiśniewska M, Terpiłowski K, Chibowski S, Urban T, Zarko VI, e
t
al. (2013) Stability of colloidal silica
modified
by macromolecular
polyacrylic acid (PAA) –
Application
of turbidymetry method. J
Macromolecular Sci. Part A: Pure and Applied Chemistry 50:
639-643.
23.
Parfitt
GD, Rochester CH (1983)
Adsorption
from
solution
at the
solid/liquid interface. Academic press, London
24.
Davydenko N, Shevchenko NM, Vlasova NN, Bogomaz VI, Chuiko
AA (1992) Ethonium
adsorption
on the surface of highly
dispersed silica.
Russian Journal of Physical Chemistry 66: 2778–
2780.
25.
Paria S, Khilar KC (2004) A review on experimental studies of
surfactant
adsorption
at the hydrophilic solid–water interface
.
Adv Colloid Interface Sci 110: 75-95.
26.
Lide DR (2003) CRC handbook of chemistry and physics. CRC
Press, Boca Raton.
27.
Iler RK (1982) The chemistry of silica, Part 1. Wiley, New York
,
USA.
28.
Mikhailova IV, Gerashchenko II (2001)
Adsorption
of
cationic
surfactants on highly dispersed silica. Colloid J. 63: 437-440.
29.
Dylla-Spears R, Wong L, Miller PE, Feit MD, Steele W, et al.
(2014) Charged micelle halo mechanism for
agglomeration
reduction
in metal oxide
particle
based polishing slurries.
Colloids Surf A: Physicochem. Eng Asp 447: 32-43.
30.
Du X, Wang X, You S, Wang Q, Gong X (2015) A case study of
aggregation
behaviors of
titanium
dioxide
nanoparticles
in the
presence of dodecylbenzene sulfonate in natural water. J
Environmental Sci. 36: 84-92.
31.
Grządka E (2012) The
adsorption
layer in the system:
Carboxymethylcellulose/Surfactants/NaCl/MnO
2
. J Surfactants
Deterg 15: 513–521.
32.
Rehbinder PA (1958)
Formation
and
aggregative
stability of
disperse systems. Colloid J USSR 20: 493-502.
Nano 






