A Chalmers-led team of astronomers has for the first time observed details on the surface of an aging star with the same mass as the Sun. Alma:s images show that the star is a giant, its diameter twice the size of Earth's orbit around the Sun, but also that the star's atmosphere is affected by powerful, unexpected shock waves.
W Hydrae is an example of an AGB (asymptotic giant branch) star. Such stars are cool, bright, old and lose mass via stellar winds. The name derives from their position on the famous Hertzsprung-Russell diagram, which classifies stars according to their brightness and temperature.
"For us it's important to study not just what red giants look like, but how they change and how they seed the galaxy with the elements that are the ingredients of life. Using the antennas of Alma in their highest-resolution configuration we can now make the most detailed observations ever of these cool and exciting stars," says Wouter Vlemmings.
Alma:s images provide the clearest view yet of the surface of a red giant with a similar mass to the Sun. Earlier sharp images have shown details on much more massive, red supergiant stars like Betelgeuse and Antares.
The observations have also surprised the scientists. The presence of an unexpectedly compact and bright spot provides evidence that the star has surprisingly hot gas in a layer above the star's surface: a chromosphere.
![]() |
| The sky around W Hydrae, as seen in visible light [Credit: Digitized Sky Survey] |
An alternative possibility is at least as surprising: that the star was undergoing a giant flare when the observations were made.
The scientists are now carrying out new observations, both with Alma and other instruments, to better understand W Hydrae's surprising atmosphere. Observations like these with Alma's highest-resolution configuration are challenging, but also rewarding, explains team member Elvire De Beck, also astronomer at Chalmers.
"It's humbling to look at our image of W Hydrae and see its size compared to the orbit of the Earth. We are born from material created in stars like this, so for us it's exciting to have the challenge of understanding something which so tells us both about our origins and our future," she says.
The research is published in Nature Astronomy.
Source: Chalmers University of Technology [November 07, 2017]








