Scientists taking a new look at older data from NASA's longest-operating Mars orbiter have discovered evidence of significant hydration near the Martian equator -- a mysterious signature in a region of the Red Planet where planetary scientists figure ice shouldn't exist.
An accessible supply of water ice near the equator would be of interest in planning astronaut exploration of Mars. The amount of delivered mass needed for human exploration could be greatly reduced by using Martian natural resources for a water supply and as raw material for producing hydrogen fuel.
By applying image-reconstruction techniques often used to reduce blurring and remove "noise" from medical or spacecraft imaging data, Wilson's team improved the spatial resolution of the data from around 320 miles to 180 miles (520 kilometers to 290 kilometers). "It was as if we'd cut the spacecraft's orbital altitude in half," Wilson said, "and it gave us a much better view of what's happening on the surface."
![]() |
| Re-analysis of 2002-2009 data from a hydrogen-finding instrument on NASA's Mars Odyssey orbiter increased the resolution of maps of hydrogen abundance [Credit: NASA/JPL-Caltech/Univ. of Arizona] |
Wilson's team concentrated on those equatorial areas, particularly with a 600-mile (1,000-kilometer) stretch of loose, easily erodible material between the northern lowlands and southern highlands along the Medusae Fossae Formation. Radar-sounding scans of the area have suggested the presence of low-density volcanic deposits or water ice below the surface, "but if the detected hydrogen were buried ice within the top meter of the surface, there would be more than would fit into pore space in soil," Wilson said. The radar data came from both the Shallow Radar on NASA's Mars Reconnaissance Orbiter and the Mars Advanced Radar for Subsurface and Ionospheric Sounding on the European Space Agency's Mars Express orbiter and would be consistent with no subsurface water ice near the equator.
How water ice could be preserved there is a mystery. A leading theory suggests an ice and dust mixture from the polar areas could be cycled through the atmosphere when Mars' axial tilt was larger than it is today. But those conditions last occurred hundreds of thousands to millions of years ago. Water ice isn't expected to be stable at any depth in that area today, Wilson said, and any ice deposited there should be long gone. Additional protection might come from a cover of dust and a hardened "duricrust" that traps the humidity below the surface, but this is unlikely to prevent ice loss over timescales of the axial tilt cycles.
"Perhaps the signature could be explained in terms of extensive deposits of hydrated salts, but how these hydrated salts came to be in the formation is also difficult to explain," Wilson added. "So for now, the signature remains a mystery worthy of further study, and Mars continues to surprise us."
Wilson led the research while at Durham University in the U.K. His team -- which includes members from NASA Ames Research Center, the Planetary Science Institute and the Research Institute in Astrophysics and Planetology -- published its in the journal Icarus.
Source: NASA [September 28, 2017]







