More than 50 million years ago, when the Earth experienced a series of extreme global warming events, early mammals responded by shrinking in size. While this mammalian dwarfism has previously been linked to the largest of these events, research led by the University of New Hampshire has found that this evolutionary process can happen in smaller, so-called hyperthermals, indicating an important pattern that could help shape an understanding of underlying effects of current human-caused climate change.
![]() |
| An Arenahippus jaw fragment (with second and third molars), as discovered in field [Credit: University of New Hampshire] |
In the study, published in Science Advances, researchers collected teeth and jaw fragments in the fossil-rich Bighorn Basin region of Wyoming. Their focus was on several early mammals including Arenahippus, an early horse the size of a small dog, and Diacodexis, a rabbit-sized predecessor to hoofed mammals.
![]() |
| Comparing fossil size; larger non-ETM2 Arenahippus specimen in left hand, smaller mid-ETM2 Arenahippus specimen in right hand [Credit: University of New Hampshire] |
"We found evidence of mammalian dwarfism during this second hyperthermal, however it was less extreme than during the PETM," said D'Ambrosia. "During ETM2 temperatures only rose an estimated five degrees Fahrenheit and it was shorter only lasting 80,000 to 100,000 years, about half as long as the larger PETM. Since the temperature change was smaller, this suggests there may be a relationship between the magnitude of a global warming event and the degree of associated mammal dwarfism."
Previous research shows that both the PETM and the ETM2 hyperthermals coincided with increased levels of carbon dioxide in the atmosphere and that could have limited nutrient quality in plants, which may have contributed to the smaller mammal body size.
![]() |
| Fossil-rich field location in Bighorn Basin, Wyoming [Credit: University of New Hampshire] |
The carbon dioxide released during both hyperthermals has a similar footprint to today's fossil fuels. Researchers hope that developing a better understanding of the relationship between the change in mammalian body size during those events and today's greenhouse gas-induced global warming may help to better predict possible future ecological changes in response to today's climate changes.
Co-authors include William Clyde, professor of Earth Sciences at UNH; Henry C. Fricke, Colorado College; Philip D. Gingerich, University of Michigan; Hemmo A. Abels, Delft University of Technology, Netherlands.
The preliminary findings were presented earlier at the Society of Vertebrate Paleontology's 2013 annual meeting.
Source: University of New Hampshire [March 15, 2017]









