Have you ever collected coins, cards, toy trains, stuffed animals? Did you feel the need to complete the set? If so, then you may be a completist. A completist will go to great lengths to acquire a complete set of something.
More than 15 years ago, scientists figured out how to catalog every gene in the human body. In the years since, rapid advances in technology and computational tools have allowed researchers to begin to categorize numerous aspects of the biological world. There's actually a special way to name these collections: Add "ome" to the end of the class of objects being compiled. So, the complete set of genes in the body is called the "genome," and the complete set of proteins is called the "proteome."
Below are three -omes that NIH-funded scientists work with to understand human health.
Genome
The genome is the original -ome. In 1976, Belgium scientists identified all 3,569 DNA bases -- the As, Cs, Gs and Ts that make up DNA's code -- in the genes of bacteriophage MS2, immortalizing this bacteria-infecting virus as possessing the first fully sequenced genome.
![]() |
Illustration of the entire outer shell of the bacteriophage MS2 [Credit: WikiCommons, Naranson] |
As more individuals' genomes have been sequenced, scientists have found that humans share 99.5% of their genome with each other. However, small differences can be quite important. As the cost of sequencing genomes has plummeted from an initial $3 billion to the current $1,000, scientists are sequencing the genomes of individuals as well as those of additional organisms used to investigate biological questions.
And all the effort has started to pay off. Genomics is beginning to reveal many of the basic components of cells and their interactions. Already, researchers are linking the presence of certain genes in the genome to specific diseases. Furthering our understanding of the genome will have a profound impact on the diagnosis and treatment of disease. Also, comparing the genomes of related and disparate species can shed light on how species evolve over time.
Lipidome
The lipidome is the collection of all the lipids, or fat molecules, within a cell. Cells use lipids to form a continuous lipid membrane around themselves and to separate their inner organelles from each other. These cellular membranes aren't simply for protection. They're also highly organized and dynamic work zones, seeded with proteins that help regulate the way cells attach to other cells, talk to each other, collect nutrients and grow.
![]() |
Composed of two layers of lipids (small brown spheres) studded with proteins (bigger purple spheroids), cell membranes form a barrier around cells [Credit: National Cancer Institute] |
Disturbances to the lipid components of cellular membranes are associated with diverse diseases, including cardiovascular disease, autoimmunity, osteoporosis, neurological disorders and cancer. Experiments investigating the lipidome of specific cells with known roles in particular diseases could help researchers identify novel treatments.
Glycome
The glycome is the complete set of glycans, also known as carbohydrates or sugars, that cells produce. Many of these glycans are linked to proteins and lipids on cell surfaces, where they can interact with molecules on other cells. Single sugars can also act as signaling molecules inside cells, altering gene editing, protein folding and other cellular functions.
![]() |
Thousands of glycans protrude from the bacterium Bactillus subtillus, forming a unique carbohydrate coat [Credit: WiCommons, Allonweiner] |
Cells also use the glycans on their outer surface, commonly referred to as "carbohydrate coats," to recognize one another (watch "Laura Kiessling: Carbohydrate Scientist" to learn more about carbohydrate coats). Likewise, viruses can recognize and bind to carbohydrate coats. By analyzing the carbohydrate binding properties of the flu virus, researchers have been able to design antiviral drugs that interfere with the virus' ability to infect our cells.
Author: Chris Palmer | Source: National Institute of General Medical Sciences [December 16, 2016]