Animals live in close association with microorganisms, carrying beneficial bacteria while coping with pathogenic infections. Now, in a study published this week in Plos Genetics, researchers from Instituto Gulbenkian de Ciencia (IGC, Portugal) discovered that symbiotic bacteria play a direct role in the evolution of their host, shaping the way it adapts to pathogens.
![]() |
Lab work with fruit flies [Credit: Sandra Ribeiro, IGC] |
The experimental set up involved fruit flies (Drosophila melanogaster) and its symbiotic bacterium, Wolbachia, exposed to viral infection. "Our previous work had shown that Wolbachia can protect fruit flies against viruses, and that different strains of these bacteria confer different levels of protection. Therefore, by studying flies that carried different strains of Wolbachia we could investigate how evolution occurred both at the level of the bacteria and of the host," explain Vitor Faria and Nelson Martins, first co-authors of this work.
By comparing populations of flies that evolved in the presence of the virus with others that evolved in its absence, the researchers observed significant changes in their bacterial composition. Throughout evolution the Wolbachia strains that provided higher protection to viral infection were selected and remained in the population of flies exposed to virus, whereas the other strains disappeared. These results indicated that selection of Wolbachia strains was associated with the advantage they provided to the host: after infection, flies with these strains were able to survive better and reproduce more than the flies that carried less protective strains.
"Host and its symbiotic bacteria are acting as an unit in response to pathogen infection, with the evolution of both genomes contributing to host adaptation. We believe similar results will be observed with other bacteria and animals," says Elio Sucena.
"The role played by symbiotic bacteria in host evolution may have to be taken into consideration when addressing different host-pathogens interactions," adds Luis Teixeira.
Source: Instituto Gulbenkian de Ciência (IGC) [September 30, 2016]