Reef castaways: Can coral make it across Darwin's 'impassable' barrier?


An international team of researchers have shown that vulnerable coral populations in the eastern tropical Pacific have been completely isolated from the rest of the Pacific Ocean for at least the past two decades.

Reef castaways: Can coral make it across Darwin's 'impassable' barrier?
Coral releasing egg/sperm bundles which will be fertilized in the water to form poppy-seed-sized larvae 
[Credit: Jamie Craggs, Project Coral, Horniman Museum and Gardens]
Ocean currents can change speed and even direction depending on the season or climatic events like El Nino.

The new study led by University of Bristol researchers has used a state-of-the-art computer model to trace the journeys of coral larvae transported at the whim of these currents.

The international team discovered that even during the record-breaking El Nino of 1998, coral larvae could not survive long enough to make the 5,000 km trip from reefs in the central Pacific to those in the east.

These findings support the opinion of Charles Darwin, who considered this intimidating expanse of open ocean 'impassable' -- countering recent arguments that the 'East Pacific Barrier' must be breachable since the same coral species are found on both sides. If so, the study argues, such breaches have not occurred recently.

Dr Sally Wood, from the Coral Reef Research at Bristol (CRAB) group in the School of Earth Sciences and lead author of the paper, explains: "Coral build the framework of tropical coral reefs, creating habitats which support one of the most diverse ecosystems on Earth.

Reef castaways: Can coral make it across Darwin's 'impassable' barrier?
Density of larval paths from the Northern Line Islands, the closest neighbors of eastern Pacific reefs, 
modeled over the 1997-98 El Nino. Modeled larvae fall short of making the >5,000 km journey from these 
  potential central Pacific sources of population replenishment to imperiled reefs in the eastern Pacific 
[Credit: S. Wood]
"Whether coral reefs can survive the pressure of climate change as well as local stresses will depend to a large extent on the ability of coral to reproduce and disperse; to replenish damaged populations, migrate from deteriorating conditions and colonise new frontiers. So it's important to map where coral are able to get to."

Dr Erica Hendy, Lecturer in Biogeochemical Cycles in the School of Earth Sciences, added: "However, you simply can't tag a coral larvae to follow where it ends up as you would a large marine animal like a turtle or shark. Coral larvae are smaller than a poppy seed, soft-bodied and released in overwhelming numbers.

"When swept off their home reef, they have an infinitesimally small chance of ever reaching a suitable place to settle and become a coral colony. We therefore use computer simulations to answer these critical questions about coral biology and conservation."

The study tracked the journeys of over five billion model 'larvae' from 636 remote reefs scattered across the central and eastern Pacific Ocean over a 14 and a half year period. Using the state-of-the-art Connectivity Modeling System, developed by Claire Paris, associate professor of ocean sciences at the University of Miami's Rosenstiel School of Marine and Atmospheric Science and run on the University of Bristol's BlueCrystal supercomputer, the researchers could manage the massive computational demands of modelling such large numbers.