References[1] F. J. Stevenson,
Humus Chemistry: Genesis, Composition, Reactions, 2nd edn
1994 (Wiley: New York).
[2] R. Sutton, G. Sposito, Molecular structure in soil humic substances: the new view.
Environ. Sci. Technol. 2005,
39, 9009.
|
CrossRef |
CAS |
PubMed |

[3] B. Vigneault, A. Percot, M. Lafleur, P. G. C. Campbell, Permeability changes in model and phytoplankton membranes in the presence of aquatic humic substances.
Environ. Sci. Technol. 2000,
34, 3907.
|
CrossRef |
CAS |

[4] P. G. C. Campbell, M. R. Twiss, K. J. Wilkinson, Accumulation of natural organic matter on the surfaces of living cells: implications for the interaction of toxic solutes with aquatic biota.
Can. J. Fish. Aquat. Sci. 1997,
54, 2543.
|
CrossRef |
CAS |

[5] L. M. Ojwang’, R. L. Cook, Environmental conditions that influence the ability of humic acids to induce permeability in model biomembranes.
Environ. Sci. Technol. 2013,
47, 8280.
|
CrossRef |
CAS |
PubMed |

[6] E. Tipping,
Cation Binding by Humic Substances 2002, pp. 37–45 (Cambridge University Press: Cambridge, UK).
[7] N. M. Elayan, W. D. Treleaven, R. L. Cook, Monitoring the effect of three humic acids on a model membrane system using
31P NMR.
Environ. Sci. Technol. 2008,
42, 1531.
|
CrossRef |
CAS |
PubMed |

[8] M. R. Twiss, L. Granier, P. Lafrance, P. G. C. Campbell, Bioaccumulation of 2,2′,5,5′-tetrachlorobiphenyl and pyrene by picoplankton (
Synechococcus leopoliensis, Cyanophyceae): Influence of variable humic acid concentrations and pH.
Environ. Toxicol. Chem. 1999,
18, 2063.
|
CAS |

[9] B. Vigneault, P. G. C. Campbell, Uptake of cadmium by freshwater green algae: effects of pH and aquatic humic substances.
J. Phycol. 2005,
41, 55.
|
CrossRef |
CAS |

[10] L. Parent, M. R. Twiss, P. G. C. Campbell, Influences of natural dissolved organic matter on the interaction of aluminum with the microalga
Chlorella: a test of the free-ion model of trace metal toxicity.
Environ. Sci. Technol. 1996,
30, 1713.
|
CrossRef |
CAS |

[11] K. J. Wilkinson, P. M. Bertsch, C. H. Jagoe, P. G. C. Campbell, Surface complexation of aluminum on isolated fish gill cells.
Environ. Sci. Technol. 1993,
27, 1132.
|
CrossRef |
CAS |

[12] J. F. McCarthy, B. D. Jimenez, T. Barbee, Effect of dissolved humic material on accumulation of polycyclic aromatic hydrocarbons: Structure-activity relationships.
Aquat. Toxicol. 1985,
7, 15.
|
CrossRef |
CAS |

[13] M. Stalmans, E. Matthijs, N. De Oude, Fate and effect of detergent chemicals in the marine and estuarine environment.
Water Sci. Technol. 1991,
24, 115.
|
CAS |

[14] H. Rogers, Sources, behaviour and fate of organic cotaminants during sewage treatment and in sewage sludges.
Sci. Total Environ. 1996,
185, 3.
|
CrossRef |
CAS |
PubMed |

[15] C. N. Mulligan, R. N. Yong, B. F. Gibbs, Surfactant-enhanced remediation of contaminated soil: a review.
Eng. Geol. 2001,
60, 371.
|
CrossRef |

[16] M. Czarnota, P. Thomas,
Using Surfactants, Wetting Agents, and Adjuvants in the Greenhouse. Document number B 1319 2013 (Cooperative Extension, The University of Georgia) Available at
http://extension.uga.edu/publications/[Verified 22 September 2015].
[17] H.-Y. Song, Y.-H. Kim, S.-J. Seok, H.-W. Gil, J.-O. Yang, E.-Y. Lee, S.-Y. Hong, Cellular toxicity of surfactants used as herbicide additives.
J. Korean Med. Sci. 2012,
27, 3.
|
CrossRef |
CAS |
PubMed |

[18] U. Zoller,
Handbook of Detergents: Environmental Impact 2004 (CRC Press: Boca Raton, FL).
[19] S. A. Ostroumov,
Biological Effects of Surfactants 2006 (CRC Press: Boca Raton, FL).
[20] G.-G. Ying, Fate, behavior and effects of surfactants and their degradation products in the environment.
Environ. Int. 2006,
32, 417.
|
CrossRef |
CAS |
PubMed |

[21] Y. Chen, M. Geurts, S. B. Sjollema, N. I. Kramer, J. L. Hermens, S. T. Droge, Acute toxicity of the cationic surfactant C12-Benzalkonium in different bioassays: how test design affects bioavailability and effect concentrations.
Environ. Toxicol. Chem. 2014,
33, 606.
|
CrossRef |
CAS |
PubMed |

[22] Ž. Pavlić, Ž. Vidaković-Cifrek, D. Puntarić, Toxicity of surfactants to green microalgae
Pseudokirchneriella subcapitata and
Scenedesmus subspicatus and to marine diatoms
Phaeodactylum tricornutum and
Skeletonema costatum.
Chemosphere 2005,
61, 1061.
|
CrossRef |
PubMed |

[23] P. Abel, Toxicity of synthetic detergents to fish and aquatic invertebrates.
J. Fish Biol. 1974,
6, 279.
|
CrossRef |
CAS |

[24] T. Cserháti, E. Forgaces, G. Oros, Biological activity and environmental impact of anionic surfactants.
Environ. Int.2002,
28, 337.
|
CrossRef |
PubMed |

[25] M. Lewis, V. Wee, Aquatic safety assessment for cationic surfactants.
Environ. Toxicol. Chem. 1983,
2, 105.
|
CrossRef |
CAS |

[26] R. Singh, N. Gupta, S. Singh, R. Suman, K. Annie, Toxicity of ionic and non-ionic surfactants to six microbes found in Agra, India.
Bull. Environ. Contam. Toxicol. 2002,
69, 265.
|
CrossRef |
CAS |
PubMed |

[27] M. Ishiguro, W. Tan, L. K. Koopal, Binding of cationic surfactants to humic substances.
Colloid Surface A. 2007,
306, 29.
|
CrossRef |
CAS |

[28] L. K. Koopal, T. P. Goloub, T. A. Davis, Binding of ionic surfactants to purified humic acid.
J. Colloid Interface Sci.2004,
275, 360.
|
CrossRef |
CAS |
PubMed |

[29] W. H. Otto, D. J. Britten, C. K. Larive, NMR diffusion analysis of surfactant-humic substance interactions.
J. Colloid Interface Sci. 2003,
261, 508.
|
CrossRef |
CAS |
PubMed |

[30] S. J. Traina, D. C. Mcavoy, D. J. Versteeg, Association of linear alkylbenzenesulfonates with dissolved humic substances and its effect on bioavailability.
Environ. Sci. Technol. 1996,
30, 1300.
|
CrossRef |
CAS |

[31] M. Luckey,
Membrane Structural Biology: with Biochemical and Biophysical Foundations 2008 (Cambridge University Press: New York).
[32] W. Tan, L. K. Koopal, W. Norde, Interaction between humic acid and lysozyme, studied by dynamic light scattering and isothermal titration calorimetry.
Environ. Sci. Technol. 2009,
43, 591.
|
CrossRef |
CAS |
PubMed |

[33] H. Lippold, U. Gottschalch, H. Kupsch, Joint influence of surfactants and humic matter on PAH solubility. Are mixed micelles formed?
Chemosphere 2008,
70, 1979.
|
CrossRef |
CAS |
PubMed |

[34] M. Keiluweit, M. Kleber, Molecular-level interactions in soils and sediments: the role of aromatic pi-systems.
Environ. Sci. Technol. 2009,
43, 3421.
|
CrossRef |
CAS |
PubMed |

[35] J. J. Pignatello, Interaction of anthropogenic organic chemicals with organic matter in natural particles.
IUPAC Series on Biophysico-chemical Processes in Environmental Systems, Volume 3 Biophysico-Chemical Processes of Anthropogenic Organic Compounds in Environmental System. 3 (Eds B. Xing, N. Senesi, P. M. Huang)
2011, pp. 3–50 (Wiley: New York).
[36] K. A. Thorn, D. W. Folan, P. MacCarthy,
Characterization of the International Humic Substances Society Standard and Reference Fulvic and Humic Acids by Solution State 13C and 1H NMR. Document number 89-4196 1989, (Department of the Interior: Denver, CO, USA).
[37] C. W. Coleman, A. L. Waldroup,
Cetylpyridinium Chloride: Claim for Exception 1999, (Food and Drug Administration, Little Rock, AR)
[38]
Triton X-100: Technical Data sheet.
2010 (The Dow Chemical Company). Available at
http://www.dow.com/markets-and-solutions/products/TRITON/TRITONX100 [Verified 16 September 2015].
[39]
Screening Information Dataset Initial Assessment Profile: Sodium Dodecyl Sulfate. CAS number 151-2135-3 1995(Organization of Economic Cooperation and Development). Available at
http://webnet.oecd.org/HPV/UI/Search.aspx[Verified 16 September 2015].
[40] B. S. Nunes, F. D. Carvalho, L. M. Guilhermino, G. V. Stappen, Use of the genus
Artemia in ecotoxicity testing.
Environ. Pollut. 2006,
144, 453.
|
CrossRef |
CAS |
PubMed |

[41] T. H. MacRae, A. S. Pandey, Effects of metals on early life stages of the brine shrimp,
Artemia: a developmental toxicity assay.
Arch. Environ. Contam. Toxicol. 1991,
20, 247.
|
CrossRef |
CAS |
PubMed |

[42] C. Arulvasu, S. M. Jennifer, D. Prabhu, D. Chandhirasekar, Toxicity effect of silver nanoparticles in brine shrimp
Artemia.
Scientific World J. 2014,
2014, 256919.
|
CrossRef |

[43] L. Manfra, F. Savorelli, M. Pisapia, E. Magaletti, A. M. Cicero, Long-term lethal toxicity test with the crustacean
Artemia franciscana.
J. Vis. Exp. 2012,
62, 3790.
|
PubMed |

[44] G. Almendros, Effects of different chemical modifications on peat humic acid and their bearing on some agrobiological characteristics of soil.
Commun Soil Sci Plan. 1994,
25, 2711.
|
CrossRef |
CAS |

[45] G. Chilom, A. S. Bruns, J. A. Rice, Aggregation of humic acid in solution: Contributions of different fractions.
Org. Geochem. 2009,
40, 455.
|
CrossRef |
CAS |

[46] L. E. Wise, M. Murphy, A. d’Addieco, Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses.
Paper Trade Journal 1946,
122, 35.
|
CAS |

[47]
Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, Appendix A, Park B: Distribution, Life Cycle, Taxonomy, and Culture Methods: Brine Shrimp (Artemia salina)
2002(Environmental Protection Agency). Available at
http://water.epa.gov/scitech/methods/cwa/wet/ [Verified 16 September 2015].
[48] P. Sorgeloos, C. R.-V. D. Wielen, G. Persoone, The use of
Artemia nauplii for toxicity tests - a critical analysis.
Ecotoxicol. Environ. Saf. 1978,
2, 249.
|
CrossRef |
CAS |
PubMed |

[49] R. S. Matthews,
Artemia salina as a test organism for measuring superoxide-mediated toxicity.
Free Radic. Biol. Med. 1995,
18, 919.
|
CrossRef |
CAS |
PubMed |

[50] A. L. Rodd, M. A. Creighton, C. A. Vaslet, J. R. Rangel-Mendez, R. H. Hurt, A. B. Kane, Effects of surface-engineered nanoparticle-based dispersants for marine oil spills on the model organism
Artemia franciscana.
Environ. Sci. Technol. 2014,
48, 6419.
|
CrossRef |
CAS |
PubMed |

[51] B. Xing, W. B. McGill, M. J. Dudas, Cross-correlation of polarity curves to predict partition coefficients of nonionic organic contaminants.
Environ. Sci. Technol. 1994,
28, 1929.
|
CrossRef |
CAS |
PubMed |

[52] G. Chilom, J. A. Rice, Structural organization of humic acid in the solid state.
Langmuir 2009,
25, 9012.
|
CrossRef |
CAS |
PubMed |

[53] P. J. Mitchell, M. J. Simpson, High affinity sorption domains in soil are blocked by polar soil organic matter components.
Environ. Sci. Technol. 2013,
47, 412.
|
CrossRef |
CAS |
PubMed |

[54] C. Lattao, J. Birdwell, J. J. Wang, R. L. Cook, Studying organic matter molecular assemblage within a whole organic soil by nuclear magnetic resonance.
J. Environ. Qual. 2008,
37, 1501.
|
CrossRef |
CAS |
PubMed |

[55] Y.-P. Chin, G. R. Aiken, K. M. Danielsen, Binding of pyrene to aquatic and commercial humic substances: The role of molecular weight and aromaticity.
Environ. Sci. Technol. 1997,
31, 1630.
|
CrossRef |
CAS |

[56] Y. Laor, W. J. Farmer, Y. Aochi, P. F. Strom, Phenanthrene binding and sorption to dissolved and to mineral-associated humic acid.
Water Res. 1998,
32, 1923.
|
CrossRef |
CAS |

[57] J. L. Bonin, M. J. Simpson, Variation in phenanthrene sorption coefficients with soil organic matter fractionation: the result of structure or conformation?
Environ. Sci. Technol. 2007,
41, 153.
|
CrossRef |
CAS |
PubMed |