First movie of stellar-surface evolution beyond our Solar System

Astronomers from the Leibniz Institute for Astrophysics Potsdam (AIP), present for the first time a movie that shows the evolution of stellar spots on a star other than our Sun. The long-term, highly-sampled, phase-resolved spectroscopic data were made possible with the STELLA robotic telescopes on Tenerife. Over a period of 6 years the growth and fade of giant stellar spots on the star XX Tri are seen. The spots reveal an underlying magnetic cycle that has a period comparable to our Sun's but is much stronger.

First movie of stellar-surface evolution beyond our Solar System
Astronomers present for the first time a movie that shows the evolution of stellar
 spots on a star other than our Sun [Credit: A. Kunstler, T. A. Carroll, and 
K. G. Strassmeier, Leibniz Institute for Astrophysics Potsdam (AIP)]
Generally, it is not possible to resolve stellar surfaces other than our Sun's directly. Clever mathematical methods and observing techniques were introduced to resolve stellar surfaces indirectly. This technique, commonly referred to as Doppler imaging or Doppler tomography, became the most advanced tool for the study of stars. In order to not only image but also to reconstruct the evolution of star spots, well-sampled time series of high-resolution spectra are needed. To obtain one single image of the stellar surface, intrinsic variations confine the data gathering process to basically a single stellar rotation.

Such long-term, highly-sampled, phase-resolved spectroscopic data for Doppler imaging of the red giant star XX Tri presented here were made possible with the STELLA robotic telescopes on Tenerife over an observing period of 6 years and are continued. This star is famous for its detected super-spot with a linear extension of 12 x 20 solar radii (Strassmeier 1999). But even for a star like XX Tri with a rotation period of 24 days, this was not a simple task. Sampling the evolution of the star spots required nightly visits of the target to obtain a continuous decade-long time series of spectra.