![]() |
Icefish swimming over bryozoans on the Weddell Seabed [Credit: Thomas Lundalv] |
In fact, most of the known consequences of climate change have made matters worse instead of better. For example, Barnes says, as the polar climate warms, sea ice melts. As sea ice has melted, the Earth's surface has turned from reflective white to a much darker blue at the poles, absorbing more heat and melting even more ice.
![]() |
RRS James Clark Ross in Bellingshausen Sea [Credit: British Antarctic Survey] |
Antarctica has not experienced a net loss of sea ice in the way the Arctic has. The ice has melted over more-productive continental shelves as ice has formed over less-productive, deeper waters. In the new study, Barnes and his colleagues collected specimens across West Antarctic seas and used high-resolution images to calculate the density of life on the seabed.
![]() |
Captain Scott, who got collection of key bryozoans off to an early start [Credit: SPRI] |
Extrapolating from the data to account for other undersea species suggests an increased drawdown of carbon of about 2.9x106 tons per year, equivalent to about 50,000 hectares of tropical rainforest. Even better is the suggestion that this carbon may be more likely to become trapped and buried at the bottom of the ocean, given the depth of the polar continental shelves.
A new international, BAS-lead scientific cruise to the South Orkney Islands MPA in early 2016 should give researchers a close-up look at why that particular location is so important. More generally, the findings are a reminder of the importance of ocean life for understanding our changing climate.
"The forests you can see are important with respect to the carbon cycle and climate change, but two-thirds of our planet is ocean, and below it the life you can't see is also very important in climate responses as well," Barnes says.
It will now be important to find out whether similar things are happening in the Arctic.
Source: Cell Press [September 21, 2015]