![]() |
Macaques are a part of the Cercopithecinae, or Old World monkeys, family [Credit: WikiCommons/Thomas Schoch] |
Its product, the TRIM5 protein, interacts directly with the outer shell of lentivirus particles after they enter the host cells and prevents the virus from multiplying there. (The human version of TRIM5 does not interfere with--and therefore not protect against--HIV, but many monkeys have TRIM5 variants that do render HIV harmless and are therefore immune to HIV/AIDS.)
Because of its unique specificity for retroviruses (whereas other restriction factors often have broader antiviral activity), the researchers hypothesized that the evolution of TRIM5 in African monkeys should reveal selection by lentiviruses closely related to modern SIVs. To derive an evolutionary tree of the TRIM5 gene, they analyzed and compared its complete protein-coding DNA sequences from 22 African primate species.
The scientists also generated a panel of (reconstructed) ancestral and existing TRIM5 genes (19 total), expressed them in cultured cell lines, and exposed the cells to 16 different retroviruses (lentiviruses and others) to see which TRIM5 versions conferred resistance to which viruses. These experiments confirmed that the observed cluster of adaptations resulted in resistance specifically to cercopithecine lentiviruses, but had no effect on restriction of other retroviruses, including lentiviruses of other, non-cercopithecine primates.
The researchers conclude "The correlation between lineage specific adaptations and ability to restrict viruses endemic to the same hosts supports the hypothesis that lentiviruses closely related to modern SIVs were present in Africa and infecting the ancestors of cercopithecine primates as far back as 16 million years ago, and provides insight into the evolution of TRIM5 specificity."
Source: PLOS [August 21, 2015]