![]() |
| Io as imaged by NASA's Galileo spacecraft [Credit: NASA/JPL-CALTECH] |
The largest of these volcanic features, named Loki after the Norse god often associated with fire and chaos, is a volcanic depression called patera in which the denser lava crust solidifying on top of a lava lake episodically sinks in the lake, yielding a raise in the thermal emission that has been regularly observed from Earth. Loki, only 124 miles in diameter and at least 373 million miles from Earth, was, up until recently, too small to be looked at in detail from any ground-based optical/infrared telescope.
With its two mirrors, each 8.4 meters (about 27 feet) across, set on the same mount 20 feet apart, the Large Binocular Telescope, or LBT, produces images at the same level of detail that a telescope with a single, 22.8-meter (75-foot) mirror would achieve by combining the light through interferometry. Thanks to the Large Binocular Telescope Interferometer, or LBTI, an international team of researchers was able to look at Loki Patera, revealing details as never before seen from Earth. Their study is published in the Astronomical Journal.
![]() |
| The Large Binocular Telescope [Credit: University of Arizona] |
For Phil Hinz, who leads the LBTI project at the University of Arizona's Department of Astronomy and Steward Observatory, this result is the outcome of a nearly 15-year development.
"We built LBTI to form extremely sharp images. It is gratifying to see the system work so well," Hinz said. He noted that this is only one of the unique aspects of LBTI. "We built the system both to form sharp images and to detect dust and planets around nearby stars at extremely high dynamic range. Recent results from LBTI on eta Crv and HR 8799 are great examples of its potential," he said.
"Interferometry is the way to combine the light coming from each of the two main mirrors of the telescope in a way which allows us to make it look like coming from a single mirror as big as the most distant points of the LBT's two mirrors: 22.8 meters instead of the 8.4 meters of each main mirror," explained Christian Veillet, director of the LBTO. "If we want to look in the vicinity of a star to find dust or planets, we use the information coming from both mirrors in a way that will 'erase' the bright star and allow us to look at faint objects around the star such as planets or a disk of dust."
LMIRcam, the camera recording the images at the very heart of LBTI in the 3 to 5 micrometers near-infrared band, was the thesis work of Jarron Leisenring as graduate student at the University of Virginia. For Jarron, now an instrument scientist for NIRCam (the Near InfraRed Camera for NASA's James Webb Space Telescope) at Steward Observatory, these observations mark "a major milestone for me and the instrument team. LMIRcam has already been very productive these past few years. Now interferometric combination provides the last step in harnessing LBTI’s full potential and enabling a whole host of new scientific opportunities."
![]() |
| Comparison between a simulated view of Io through an 8-meter telescope (left) and the final real LBTI reconstruction (right) [Credit: LBTO] |
"Two of the volcanic features are at newly active locations," explains Katherine de Kleer, a graduate student at the University of California, Berkeley. "They are located in a region called the Colchis Regio, where an enormous eruption took place just a few months earlier, and may represent the aftermath of that eruption. The high resolution of the LBTI allows us to resolve the residual activity in this region into specific active sites, which could be lava flows or nearby eruptions."
"Studying the very dynamic volcanic activity on Io, which is constantly reshaping the moon 's surface, provides clues to the interior structure and plumbing of this moon," remarked team member Chick Woodward of the University of Minnesota, "helping to pave the way for future NASA missions such as the Io Volcano Observer. Io's highly elliptical orbit close to Jupiter is constantly tidally stressing the moon, like the squeezing of a ripe orange, where the juice can escape through cracks in the peel."
Added Veillet: "While there is still much work ahead to make the LBT/LBTI combination a fully operational instrument, we can safely state that the Large Binocular Telescope is truly a forerunner of the next generation of Extremely Large Telescopes slated to see first light in a decade (or more) from now."
Author: Daniel Stolte | Source: University of Arizona [May 01, 2015]










