![]() |
| Composite showing secretory luminescence as a defensive mechanism [Credit: Edith Widder] |
“Bioluminescence is a really cool phenomenon. It’s mysterious, beautiful and captivating,” Bracken-Grissom said. “It has applications in environmental monitoring, biotechnology and medicine, and agriculture and food safety. But, for me, I study it because of its importance to the organisms and how it helps in their survival.”
The evolution of bioluminescence
Deep-sea shrimps exhibit bioluminescence in two ways—a blue secretion from the mouth used for predatory defense and organs that emit light along the length of the body, including the eyes, limbs and abdomen.
![]() |
| Close-up showing photophores, or light-emitting organs [Credit: Tin-Yam Chan] |
"When we sequenced the RNA of the eyes to find out what genes are being expressed we found that those who have light-emitting organs have special visual pigments not seen in the other ones," said Perez-Moreno, a Ph.D. student in the Bracken-Grissom Lab. "This finding also allows us to hypothesize that their ability to detect light at different wavelengths is probably used to differentiate between bioluminescent types."
How bioluminescence affects vision
The researchers investigated how the vision of deep-sea shrimps exhibiting both light-emitting organs and secretory luminescence differ from those with just secretory bioluminescence.
In the deep sea, the only forms of light are bioluminescence and dim sunlight from the surface, most commonly peaking in the blue spectrum. Therefore, most deep-sea species have one photopigment that is sensitive to blue-green light. They found deep-sea shrimps with both secretory and photophore bioluminescence have two photopigments making them sensitive to both blue-green and near-ultraviolent (near-UV) light.
"This was a very exciting finding as in a way it supported the hypothesis these shrimps might use their photophores for counter-illumination, and thus needing to able to detect near-UV light coming from above as well," Perez-Moreno said.
The researchers advocate the further study of bioluminescence and light-detecting capabilities of these shrimps and other deep-sea organisms.
The study was published in Molecular Phylogenetics and Evolution in December. 2014
Source: Florida International University [February 09, 2015]







