"Investigating the long-term history of reefs and their geochemistry is something that is difficult to do in many places, so this was a unique opportunity to look at the relationship between reef growth and environment," said Kim Cobb, an associate professor in the School of Earth and Atmospheric Sciences at the Georgia Institute of Technology. "This study shows that there appears to have been environmental triggers for this well-documented reef collapse in Panama."
The study was sponsored by the Geological Society of America, the American Museum of Natural History and the Smithsonian Institution's Marine Science Network. The study is scheduled for publication on February 23 in the journal Nature Climate Change. The study was a collaboration with the Florida Institute of Technology, with Cobb's lab providing an expertise in fossil coral analysis.
![]() |
An actively growing reef in Panamá [Credit: Lauren Toth] |
"Temperature was a key cause of reef collapse and modern temperatures are now within several degrees of the maximum these reefs experienced over their 6,750 year history," said Lauren Toth, the study's lead author, who was a graduate student at Florida Tech during the study. "It's possible that anthropogenic climate change may once again be pushing these reefs towards another regional collapse."
For the study, the research team analyzed a 6,750-year-old coral core from Pacific Panamá. The team then reconstructed the coral's past functions, such as growth and accretion (accumulation of layers of coral), and compared that to surrounding environmental conditions before, during and after the 2,500-year hiatus in vertical accretion.
![]() |
Pocillopora coral in Panamá dying from desiccation during the 2010 La Niña event [Credit: Lauren Toth] |
In Pacific Panamá, La Niña-like periods are characterized by a cold, wet climate with strong seasonal upwelling. Due to limited data at the site, the researchers cannot quantify the intensity of La Niña events during this time, but document that conditions similar to La Niña were present at this site during this time.
"These conditions would have been for quite an extended time, which suggests that the reef was quite sensitive to prolonged change in environmental conditions," Cobb said. "So sensitive, in fact, that it stopped accreting over that period."
"We are in the midst of a major environmental change that will continue to stress corals over the coming decades, so the lesson from this study is that there are these systems such as coral reefs that are sensitive to environmental change and can go through this kind of wholesale collapse in response to these environmental changes," Cobb said.
Future work will involve expanding the study to include additional locations throughout the tropical Pacific.
"A broad-scale perspective on long-term reef growth and environmental variability would allow us to better characterize the environmental thresholds leading to reef collapse and the conditions that facilitate survival," Toth said. "A better understanding of the controls on reef development in the past will allow us to make better predictions about which reefs may be most vulnerable to climate change in the future."
Author: Brett Israel | Source: Georgia Institute of Technology [February 23, 2015]