![]() |
| Sea anemone [Credit: Steve Rupp/National Science Foundation] |
Electrical impulses in nerve cells are generated by charged molecules known as ions moving into and out of the cell through highly specialized ion-channel proteins that form openings in the cell membrane. The new research focuses on the functional evolution of the genes that encode the proteins for potassium channels -- ion channels that allow potassium to flow out of nerve cells, stopping the cell's electrical impulses. "The channels are critical for determining how a nerve cell fires electrical signals," said Jegla. "It appears that animals such as sea anemones and jellyfish are using the same channels that shape electrical signals in our brains in essentially the same way."
![]() |
| Various species of comb jellies, the most ancient group of animals with a nervous system alive today [Credit: David Simmons/University of Florida] |
The implication is that many of the mechanisms we use to control electrical impulses in our neurons were not present in the earliest nervous systems. The team did find many different potassium channels in comb jellies, but they appear to have evolved independently after the comb jelly lineage split from that of our ancestors. "We don't know how complex electrical signaling is in living comb jellies, but it probably wasn't very complex in our common ancestor," said Jegla. The team now is interested in figuring out what drove the burst of innovation in ion channels in our common ancestor with sea anemones.
"We don't yet understand why our ion channels evolved at that time, but the changes in the ability of nerve cells to generate electrical signals must have been revolutionary," said Jegla. "Our current favorite hypothesis is that neurons capable of directional signaling might have evolved at this time." In human nervous systems, most nerve cells have a polar structure with separate regions for inputs and outputs. This allows for directional information flow and highly complex circuits of nerve cells, but it requires a huge diversity of ion channels to shape the electrical signals as they pass through the polar nerve cells. "If our hypothesis turns out to be correct, we may be able to gain some important insights into how nerve cells and circuits evolved by studying sea anemones," said Jegla. "There is a lot that remains to be discovered about how we build polar neurons, and we can use evolution to point out the really important mechanisms that have been conserved through animal history."
A paper describing the research has been posted online in the Early Edition (EE) of the journal Proceedings of the National Academy of Sciences.
Source: Penn State University [February 16, 2015]







