Their study, reported in the Feb. 13 edition of the journal Science, found between 4.8 and 12.7 million metric tons of plastic entered the ocean in 2010 from people living within 50 kilometers of the coastline. That year, a total of 275 million metric tons of plastic waste was generated in those 192 coastal countries.
Jambeck, an assistant professor of environmental engineering in the UGA College of Engineering and the study's lead author, explains the amount of plastic moving from land to ocean each year using 8 million metric tons as the midpoint: "Eight million metric tons is the equivalent to finding five grocery bags full of plastic on every foot of coastline in the 192 countries we examined."
To determine the amount of plastic going into the ocean, Jambeck "started it off beautifully with a very grand model of all sources of marine debris," said study co-author Roland Geyer, an associate professor with the University of California, Santa Barbara's Bren School of Environmental Science & Management, who teamed with Jambeck and others to develop the estimates.
![]() |
| Marine debris litters the Haiti coastline [Credit: Timothy Townsend] |
"For the first time, we're estimating the amount of plastic that enters the oceans in a given year," said study co-author Kara Lavender Law, a research professor at the Massachusetts-based Sea Education Association. "Nobody has had a good sense of the size of that problem until now."
The framework the researchers developed isn't limited to calculating plastic inputs into the ocean.
"Jenna created a framework to analyze solid waste streams in countries around the world that can easily be adapted by anyone who is interested," she said. "Plus, it can be used to generate possible solution strategies."
Plastic pollution in the ocean was first reported in the scientific literature in the early 1970s. In the 40 years since, there were no rigorous estimates of the amount and origin of plastic debris making its way into the marine environment until Jambeck's current study.
![]() |
| Debris from urban activities and runoff accumulates at the edge of Lake Michigan [Credit: Jenna Jambeck/UGA] |
"It is incredible how far we have come in environmental engineering, advancing recycling and waste management systems to protect human health and the environment, in a relatively short amount of time," she said. "However, these protections are unfortunately not available equally throughout the world."
Some of the 192 countries included in the model have no formal waste management systems, Jambeck said. Solid waste management is typically one of the last urban environmental engineering infrastructure components to be addressed during a country's development. Clean water and sewage treatment often come first.
"The human impact from not having clean drinking water is acute, with sewage treatment often coming next," she said. "Those first two needs are addressed before solid waste, because waste doesn't seem to have any immediate threat to humans. And then solid waste piles up in streets and yards and it's the thing that gets forgotten for a while."
With the mass increase in plastic production, the idea that waste can be contained in a few-acre landfill or dealt with later is no longer viable. That was the mindset before the onslaught of plastic, when most people piled their waste--glass, food scraps, broken pottery--on a corner of their land or burned or buried it. Now, the average American generates about 5 pounds of trash per day with 13% of that being plastic.
But knowing how much plastic is going into the ocean is just one part of the puzzle, Jambeck said. With between 4.8 and 12.7 million metric tons going in, researchers like Law are only finding between 6,350 and 245,000 metric tons floating on the ocean's surface.
"This paper gives us a sense of just how much we're missing," Law said, "how much we need to find in the ocean to get to the total. Right now, we're mainly collecting numbers on plastic that floats. There is a lot of plastic sitting on the bottom of the ocean and on beaches worldwide."
Jambeck forecasts that the cumulative impact to the oceans will equal 155 million metric tons by 2025. The planet is not predicted to reach global "peak waste" before 2100, according to World Bank calculations.
"We're being overwhelmed by our waste," she said. "But our framework allows us to also examine mitigation strategies like improving global solid waste management and reducing plastic in the waste stream. Potential solutions will need to coordinate local and global efforts."
Author: Stephanie Schupska | Source: University of Georgia [February 13, 2015]









