![]() |
The University of Glasgow team have developed a chemical version of evolution [Credit: Shutterstock] |
The researchers used a specially-designed open source robot based upon a cheap 3D printer to create and monitor droplets of oil in water-filled Petri dishes in their lab. Each droplet was composed from a slightly different mixture of four chemical compounds.
Droplets of oil move in water like primitive chemical machines, transferring chemical energy to kinetic energy. The researchers’ robot used a video camera to monitor, process and analyse the behaviour of 225 differently-composed droplets, identifying a number of distinct characteristics such as vibration or clustering.
![]() |
Photographs of the droplet behaviour as a function of time (from left to right) for all the traits (given in a–i) [Credits: Cronin et al, 2014] |
Over the course of 20 repetitions of the process, the researchers found that the droplets became more stable, mimicking the natural selection of evolution.
The research team was led by Professor Lee Cronin, the University of Glasgow’s Regius Chair of Chemistry.
“This initial phase of research has shown that the system we’ve designed is capable of facilitating an evolutionary process, so we could in the future create models to perform specific tasks, such as splitting, then seeking out other droplets and fusing with them. We’re also keen to explore in future experiments how the emergence of unexpected features, functions and behaviours might be selected for.
“In recent years, we’ve learned a great deal about the process of biological evolution through computer simulations. However, this research provides the possibility of new ways of looking at the origins of life as well as creating new simple chemical life forms.”
The project is the latest of the Cronin Group’s efforts to explore evolution outside organic biology. Other projects have included the development of inorganic chemical cells known as iCHELLs, which are built from molecules of metal and exhibit some of the same abilities as living cells.
Source: University of Glasgow [December 08, 2014]