![]() |
DNA can survive a flight through space and re-entry into the earth’s atmosphere and still pass on genetic information [Credit: Ciro Villa] |
"This study provides experimental evidence that the DNA's genetic information is essentially capable of surviving the extreme conditions of space and the re-entry into Earth's dense atmosphere," says study head Professor Oliver Ullrich from the University of Zurich's Institute of Anatomy.
Spontaneous second mission
The experiment called DARE (DNA atmospheric re-entry experiment) resulted from a spontaneous idea: UZH scientists Dr. Cora Thiel and Professor Ullrich were conducting experiments on the TEXUS-49 mission to study the role of gravity in the regulation of gene expression in human cells using remote-controlled hardware inside the rocket's payload.
![]() |
Launch of the rocket TEXUS-49 from the Esrange Space Center in Kiruna, North Sweden [Credit: Adrian Mettauer] |
"Biosignatures are molecules that can prove the existence of past or present extraterrestrial life," explains Dr. Thiel. And so the two UZH researchers launched a small second mission at the European rocket station Esrange in Kiruna, north of the Arctic Circle.
DNA survives the most extreme conditions
The quickly conceived additional experiment was originally supposed to be a pretest to check the stability of biomarkers during spaceflight and re-entry into the atmosphere. Dr. Thiel did not expect the results it produced: "We were completely surprised to find so much intact and functionally active DNA." The study reveals that genetic information from the DNA can essentially withstand the most extreme conditions.
![]() |
Dr. Cora Thiel and Professor Oliver Ullrich salvage DNA molecules from the outer shell of the payload section of the TEXUS rocket [Credit: Adrian Mettauer] |
This extraordinary stability of DNA under space conditions also needs to be factored into the interpretion of results in the search for extraterrestrial life: "The results show that it is by no means unlikely that, despite all the safety precautions, space ships could also carry terrestrial DNA to their landing site. We need to have this under control in the search for extraterrestrial life," points out Ullrich.
The study is published in the journal PLoS One.
Source: University of Zurich [November 26, 2014]