Baums led the international research team, including Jennifer Boulay, a Penn State graduate student; Jorge Cortes, professor at the University of Costa Rica; and Michael Hellberg, associate professor of biological sciences at Louisiana State University. The researchers sampled the lobe coral Porites lobata in the Eastern Pacific Ocean off the West Coast of Central America and genetically analyzed the samples to reveal differences among various sample locations. When the scientists analyzed their data they found an unexpected pattern: one that suggested two separate lineages of coral that look deceivingly similar and sometimes live together in the same location.
As the genetic data confirmed, the samples were not all Porites lobata, as the researchers initially thought. Instead, some belonged to the species P. evermanni. "That surprised us," Baums said. "These two lineages look identical and we thought they were all the same coral species, but evermanni has a very different genetic makeup. We knew about P. evermanni -- it's not a new species -- but we didn't expect to find it in the Eastern Pacific, which is a suboptimal environment for coral. Typically you find P. evermanni in the waters of the Hawaiian Islands."
![]() |
| Adult Porites coral. The key-hole shaped openings in the colony surface are made by tiny mussels that live inside the coral skeleton [Credit: Iliana Baums, Penn State University] |
Boulay found other important differences: P. evermanni had many genetically identical clones, which means that this species is reproducing asexually by breaking apart, although P. lobata did not. Further, the clonally reproducing P. evermanni, on average, housed many more tiny mussels that lived within the coral colonies' skeletons. The mussels poke through the surface of the colonies and form keyhole-shaped holes.
The researchers then wanted to determine the connection between P. evermanni's ability to clonally reproduce and its interactions with the mussels and other members of the reef community in the Eastern Pacific. Cortes remembered that several years ago a colleague had reported a finding that some corals are a target of biting triggerfish. "That was the missing piece," Baums said. "We realized that triggerfish were eating mussels inside the coral skeletons, and to get at the mussels the fish have to bite the coral. Then they spit the fragments out, and those fragments land on the ocean floor and grow into new colonies.
![]() |
| Porites coral surface detail. The key-hole shaped openings in the colony surface are made by tiny mussels that live inside the coral skeleton [Credit: Iliana Baums, Penn State University] |
The benefit of asexual reproduction, Baums explains, is that corals living in a harsh environment such as the Eastern Pacific might have a hard time finding partners for sexual reproduction. "It takes two to tango so you need a partner," she said. "In areas of the Eastern Pacific that are so harsh that only a few individuals can survive, it might be easier for the coral to clone itself, ensuring that the offspring can survive as well."
As for the difference in bleaching, there are two possible explanations. One possibility is that the types of algae living in the coral species are different, and one of them can withstand a hotter temperature. "Just like in your garden -- the tomatoes like the heat more than the cauliflower does," said Baums.
Another possibility is that the difference is not in the algae but in the corals themselves. "In the literature there's been a lot of attention paid to how different algal species react to increases in temperature and whether, if a coral species could switch to a hardier alga, it could survive hotter temperatures," Baums said. But what the researchers found suggested a different scenario. Even though the two coral species have the same algal species, bleaching still differs. That suggests it's the coral host that contributes to bleaching.
"The good news in all of this is that some of these corals are true survivors, especially in the Eastern Pacific," Baums said. "It's a rough place for coral to live but they are still hanging around. So if we can figure out how to slow down climate change and keep identifying some hardy corals, we can do something about preserving coral reefs."
Author: Krista Weidner | Source: Penn State [December 13, 2013]








