![]() |
| This image, using data from NASA's Galileo mission, shows the first detection of clay-like minerals on the surface of Jupiter's moon Europa [Credit: NASA/JPL-Caltech/SETI] |
Many scientists believe Europa is the best location in our solar system to find existing life. It has a subsurface ocean in contact with rock, an icy surface that mixes with the ocean below, salts on the surface that create an energy gradient, and a source of heat (the flexing that occurs as it gets stretched and squeezed by Jupiter's gravity). Those conditions were likely in place shortly after Europa first coalesced in our solar system.
Scientists have also long thought there must be organic materials at Europa, too, though they have yet to detect them directly. One theory is that organic material could have arrived by comet or asteroid impacts, and this new finding supports that idea.
![]() |
| This artist's concept shows a possible explosion resulting from a high-speed collision between a space rock and Jupiter's moon Europa [Credit: NASA/JPL-Caltech] |
The leading explanation for this pattern is the splash back of material ejected when a comet or asteroid hits the surface at an angle of 45 degrees or more from the vertical direction. A shallow angle would allow some of the space rock's original material to fall back to the surface. A more head-on collision would likely have vaporized it or driven that space rock's materials below the surface. It is hard to see how phyllosilicates from Europa's interior could make it to the surface, due to Europa's icy crust, which scientists think may be up to 60 miles (100 kilometers) thick in some areas.
Therefore, the best explanation is that the materials came from an asteroid or comet. If the body was an asteroid, it was likely about 3,600 feet (1,100 meters) in diameter. If the body was a comet, it was likely about 5,600 feet (1,700 meters) in diameter. It would have been nearly the same size as the comet ISON before it passed around the sun a few weeks ago.
"Understanding Europa's composition is key to deciphering its history and its potential habitability," said Bob Pappalardo of JPL, the pre-project scientist for a proposed mission to Europa. "It will take a future spacecraft mission to Europa to pin down the specifics of its chemistry and the implications for this moon hosting life."
For more information about Europa, visit: http://solarsystem.nasa.gov/europa/home.cfm .
Source: JPL/NASA [December 11, 2013]







