The team’s analysis showed that the lake was calm and likely had fresh water, containing key biological elements such as carbon, hydrogen, oxygen, nitrogen and sulphur. Such a lake would provide perfect conditions for simple microbial life such as chemolithoautotrophs to thrive in.
On Earth, chemolithoautotrophs are commonly found in caves and around hydrothermal vents. The microbes break down rocks and minerals for energy.
![]() |
Sedimentary rocks of the Yellowknife Bay formation. For more information on each individual image, please see Figure 5 in the manuscript by Grotzinger et al [Credit: Science/AAAS] |
Professor Sanjeev Gupta, a member of the MSL mission from the Department of Earth Science and Engineering at Imperial College London and a co-author on the papers, says: “It is important to note that we have not found signs of ancient life on Mars. What we have found is that Gale Crater was able to sustain a lake on its surface at least once in its ancient past that may have been favourable for microbial life, billions of years ago. This is a huge positive step for the exploration of Mars.
“It is exciting to think that billions of years ago, ancient microbial life may have existed in the lake’s calm waters, converting a rich array of elements into energy. The next phase of the mission, where we will be exploring more rocky outcrops on the crater’s surface, could hold the key whether life did exist on the red planet.”
The team analysed the geology and chemistry of the mudstones by drilling into the rock using the MSL six-wheeled science laboratory, which is remotely operated by the MSL team from the Jet Propulsion Laboratory in Pasadena in the USA.
The next step will see the team using the rover to explore Gale Crater for further evidence of ancient lakes or other habitable environments in the thick pile of sedimentary rocks scattered across the crater’s surface.
The research is published today in the journal Science.
Source: Imperial College London [December 09, 2013]