In the Middle Ages, the fear of this “heavy hand of God” reached its pinnacle; comets were thought to portend terrible natural phenomena, such as floods or earthquakes. In the 16th and early 17 centuries, they became a favourite subject for broadsheets, the forerunners of newspapers. A poem from the 15th century provides an impressive description of the nature of comets: “They bring fever, illness, pestilence and death, difficult times, shortages and times of great famine.”
The tailed stars also found their way into art and were depicted, for example, in the famous Bayeux Tapestry, which shows the conquest of England by William of Normandy in 1066. Or in a fresco by the Italian Renaissance painter Giotto di Bondone in the Cappella degli Scrovegni in Padua (1304). Both portrayals were inspired by the appearance of the famous Halley’s Comet, and Giotto’s fresco “Adoration of the Magi” gave rise to the still widespread belief that the Star of Bethlehem was actually a comet.
Astronomical research on comets was slow in starting. Nevertheless, Peter Apian from Ingolstadt (really Peter Bienewitz, 1495 to 1552) was the first astronomer of modern times to observe that the tails of comets always point away from the Sun. Apian describes this in his book Astronomicum Caesareum, which was published in 1540 and dedicated to Emperor Charles V.
A few decades later, the Danish astronomer Tycho Brahe (1546 to 1601) recognised that comets were independent celestial bodies: he measured the parallax of the bright comet of 1577 and thereby determined its distance to be around 230 Earth radii, corresponding to 1.5 million kilometres. This conclusively refuted the teachings of Aristotle that comets were phenomena within the terrestrial atmosphere. Comets even turned out to be translunar objects, meaning they stayed beyond the Moon.
![]() |
| Impressive comet: Comets can often be found on broadsheets, early forerunners of modern newspapers [Credit: © Max Planck Society] |
Johannes Hevelius (1611 to 1687), a Danzig alderman and astronomer, believed – correctly, as we now know - in elongated parabolas and hyperbolas. The dispute about the correct form of the trajectory adorns the title page of Hevelius’ Cometographia. The book was published in 1665 and also addressed the appearance and form of the comets, and attempted to classify their tails.
In 1680, the 24-year-old Edmond Halley (1656 to 1742) observed a large comet. The friend of Isaac Newton who later became Astronomer Royal tried desperately to have the comet run on a straight trajectory, as Kepler had demanded six decades before. In vain! During a meeting with Newton, Halley explained that the comet of 1680 probably had a “sharply curved” trajectory.
This clarified the form of the comet’s trajectory. But where do they come from? And what causes these occasionally magnificent phenomena? In 1950, the Dutch astronomer Jan Hendrik Oort (1900 to 1992) suspected that the long-period comets originate from a reservoir that envelops our planetary system like a shell at a distance of up to 1.6 light years. In addition to this Oort Cloud, which has not yet been confirmed by observation - the Estonian astronomer Ernst Öpik had already guessed at a similar object back in 1932 - there obviously exists yet another home for medium-period comets - the Kuiper belt.
Out there, at the edge of the solar system, possibly 100 billion frozen lumps of ice and rock with diameters ranging from a few metres to around 100 kilometres are drifting around. These are the nuclei of the comets. The European Giotto space probe was the first to take a close-up photo of such a nucleus as it flew past Halley’s Comet at a distance of just under 600 kilometres.
Later missions to other comets - to Wild 2, for example - confirmed this impression: the pictures always show crater-covered “space potatoes” from whose surface material is ejected into space. This material originates from the time when the planetary system was born 4.5 billion years ago and is practically unchanged thanks to the freezing. Comets are therefore welcome messengers from the past.
Let’s accompany one of these dirty snowballs that was catapulted out of the Oort Cloud on its journey towards the Sun. As the distance decreases, the temperature increases. The comet gases vaporise and form an extended, thin atmosphere: the coma. This reaches a diameter of several 100,000 kilometres. The comet is now nearly at the level of Saturn’s orbit and can be discovered from Earth.
![]() |
| Peanut in space: Close-up of the Hartley 2 comet, photographed by the Deep Impact space probe [Credit: © NASA / JPL-Caltech / UMD] |
Photos of bright comets, such as Hale-Bopp for instance, show that there are basically two different types of tail: the straight gas or plasma tail with a blue glow, and the frequently fanned-out dust tail with a yellow shimmer; the latter is caused mainly by the light pressure of the solar radiation. Occasionally, some comets have an anti-tail as well, which is illuminated space rubble that the comet deposits along its trajectory and that appears for a short time as a bright line under favourable light and projection conditions.
The space rubble consists of very fine particles, and larger rocks as well, which the solar wind continuously blows out of the comet. As already mentioned, the released comet material spreads out like a “dirt track” in space, as it were. If the Earth passes through such a field of scree, the particles penetrate into the atmosphere and race across the sky as a shooting star.
These could include larger pieces, which do not simply burst during their fiery ride through the terrestrial atmosphere, but fall to Earth as meteorites. And this is where the comets come into play as genuine “harbingers of bad tidings”: our planet is, namely, bombarded continuously by cosmic bullets. Crater basins such as the Nördlinger Ries bear witness to the striking of such bombs. The impact of a kilometre-sized hunk from space - a comet nucleus or asteroid - would have catastrophic consequences. ISON represents no danger, however. At the end of December, it will fly past Earth at a reassuring distance of 64 million kilometres.
Author: Helmut Hornung | Source: Max Planck Society [November 08, 2013]











