The Atacama Large Millimeter/submillimeter Array (ALMA) successfully captured a detailed image of high density molecular gas around an active galactic nucleus harboring a supermassive black hole. The observations at the highest ever achieved reveal a unique chemical composition characterized by enhancement of hydrogen cyanide (HCN) around the black hole. An research team thought a high temperature affected by the black hole caused this peculiar chemical properties. The team expect that this unique chemical properties can be used to find black holes hidden behind dust.
Background
With recent advancement in observational research, it has been revealed that many galaxies contain a supermassive black hole [1] at their centers. However, the formation process of such massive black holes is yet to be discovered by modern astronomy. A study result shows that the mass of a supermassive black hole is approximately proportional to that of the central part of the galaxy (galactic bulge). This means that the higher mass galaxy has a higher mass black hole. A galactic bulge is thought to evolve through numerous mergers and collisions with other galaxies which would bring a large amount of interstellar materials [2] into a galactic center and further the evolution of a black hole. To investigate this "coevolution" of a galaxy and a black hole, it is necessary to study the mass of black holes in all ages as well as the kinematics of surrounding interstellar molecules that flow into the black hole. However, the first thing we need to do is to confirm the existence of a black hole at the galactic center by observation.
The goal of the research group is to establish a new exploration method using as reference various molecular/atomic emission lines which can be observed at millimeter/submillimeter wavelengths [3]. Millimeter/submillimeter waves are the most basic and most important wavelengths in observing interstellar molecules or more specifically cold high density gas, and thus suitable for the observation of the galactic center due to its very unique characteristic of being not susceptible to dust absorption. With the advancement of the study of interstellar chemical model in recent years, it is assumed that each of galactic phenomena (e.g. supermassive black hole, bursts of star formation, etc.) would have different impact on interstellar materials. The idea of the new method is to take these differences observed in interstellar materials as useful reference to identify the relevant galactic phenomenon.
High sensitivity, high spatial rexolution observation with ALMA
For the development and verification of a new method, it would be better to select a nearby galaxy which can be spatially resolved and examined in detail compared to a distant galaxy whose properties are largely unknown. Therefore, the research group targeted molecular line emissions from hydrogen cyanide (HCN), formyl ion (HCO+), and hydrogen sulfide (CS) at millimeter/submillimeter wavelengths [4] in the galaxy called NGC 1097 (about 50 million light years away) with the ALMA Telescope in the Atacama Desert in Chile. The observed molecular emission lines are suitable for the observation of high-density regions like a galactic center, and NGC 1097 is a galaxy that already proved to have an active supermassive black hole at its center by a preceding study.
Results
In spite of a relatively short observation for about 2 hours in total, low-noise, high-quality data was obtained at a high resolution of 1.5 arcsec.
The new identification method is based on molecular line emission at submillimeter wavelengths. Although the emission frequency of the more distant objects becomes lower due to the expansion of the universe, the ALMA Telescope is designed to receive millimeter waves in a frequency range lower than submillimeter waves observed this time, which means this identification method can be applied to objects even 10 billion light years away and will be a competent observation method in the ALMA Era when there will be a dramatic advancement in the research of distant galaxies.
Future Prospective
This research revealed that the center of NGC 1097 contains highly-heated gas which would be related to the existence of a supermassive black hole, and the high-temperature gas induces the generation of HCN molecules. Focusing on this result, the research group developed a new exploration method of black holes by observations of molecular lines at submillimeter wavelengths. In the future, the research group will conduct verifications of this method by increasing the number of target objects and further detailed observations of high-density-gas with ALMA, aiming to explore the mysterious evolution process of black holes lying deep within the molecular clouds that cannot be reached by optical/infrared observations.
Notes
[1] A supermassive black hole has several million to several billion solar masses.
[2] Outer space is not a perfect vacuum. It is filled with gas and dust collectively called interstellar materials, which serve as "fuel" for black holes and star forming activities as important components of the universe.
[3] Millimeter and submillimeter waves are electromagnetic waves whose wavelengths are several mm and 0.1 to 1 mm respectively.
[4] Molecular rotation is described as discrete energy levels by quantum mechanics. When a molecule transits from a certain rotation state to another, it emits or absorbs electromagnetic waves that have energy equivalent to the difference of energy between the two states. Since the rotational transition is observed mostly in the electromagnetic spectrum at a different frequency corresponding to each molecule, it enables to identify what molecules exist from the frequencies of the observed spectra.
Source: ALMA [October 24, 2013]
Home »
» Unique chemical composition surrounding supermassive black hole