Swarming offers clues on how intelligence developed

Many animals -- from locusts to fish -- live in groups and swarm, but scientists aren't sure why or how this behavior evolved. Now a multidisciplinary team of Michigan State University scientists has used a model system to show for the first time that predator confusion can make prey evolve swarming behavior.

Swarming offers clues on how intelligence developed
The picture is of a single swarm that evolved in the model due to predation in the presence of the predator confusion effect. If you think of each white line as a fish or bird (prey) and the red line as the predator, you can see this as a "top-down" view of the swarm if you were looking over them [Credit: Randal Olson, Michigan State University]
Swarming allows groups of animals to accomplish tasks that they can't do alone, such as defending themselves from a much larger predator.

"There are both costs and benefits to swarming and all other behaviors," said Christoph Adami, MSU professor of microbiology and molecular genetics. "The benefits are discussed all the time. But the litmus test is whether a behavior evolves because of those benefits. If it doesn't evolve, it doesn't mean it's not beneficial, but if it does evolve, it's proof that the behavior has benefits that outweigh its costs. Our model system shows that predator confusion was enough of a selection pressure to evolve swarming behavior in prey."

The paper "Predator confusion is sufficient to evolve swarming behavior," is published online today by the Journal of the Royal Society Interface.

"In our computational model system, swarming evolved as a defense to exploit the predator confusion effect," said Randal Olson, computer science graduate student and lead author of the paper. "Rather than seeing just one or two prey when the predators attack, which is what happens when prey scatter, swarming makes the predators see many prey, which confuses them and allows more prey to survive."

The researchers used a computer model system where the predators and the prey continuously interacted. The system selected prey and predators that evolved survival-enhancing behaviors -- either eating prey (the predators) or avoiding being eaten (the prey). Each experiment was replicated more than 100 times to make sure that the behavior evolved due to predator confusion and not just by chance.