Citation of. The aquatic macrophyte Ceratophyllum demersum immobilizes Au nanoparticles after their addition to water. Document that cites: Ostroumov S.A., Kolesov G.M. The aquatic macrophyte Ceratophyllum demersum immobilizes Au nanoparticles after their addition to water (2010) Doklady Biological Sciences, 431 (1) , pp. 124-127. Tags: gold, nanomaterials, environmental, chemistry, science, aquatic plants, plant science, water, nanoscience, nanoscale, nano, China, citation,


Citation of. The aquatic macrophyte Ceratophyllum demersum immobilizes Au nanoparticles after their addition to water.
http://5bio5.blogspot.com/2013/05/cited-of-aquatic-macrophyte.html
Document that cites the following paper:
Ostroumov S.A., Kolesov G.M. (Moscow State University, Institute of Geochemistry of Russian Academy of Sciences).
The aquatic macrophyte Ceratophyllum demersum immobilizes Au nanoparticles after their addition to water
(2010) Doklady Biological Sciences, 431 (1), pp. 124-127.
Tags: gold, nanomaterials, environmental, chemistry, science, aquatic plants, plant science, water, nanoscience, nanoscale, nano, China, citation,
**
Cited by:

Distribution and bioavailability of ceria nanoparticles in an aquatic ecosystem model.
Zhang, P., He, X., Ma, Y., Lu, K., Zhao, Y., Zhang, Z.
2012.
Chemosphere 89 (5), pp. 530-535.
**
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, And Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, The Chinese Academy of Sciences, P.O. Box 918, Beijing 100049, China 
Abstract:
Along with the increasing utilization of engineered nanoparticles, there is a growing concern for the potential environmental and health effects of exposure to these newly designed materials. Understanding the behavior of nanoparticles in the environment is a basic need. The present study aims to investigate the distribution and fate of ceria nanoparticles in an aquatic system model which consists of sediments, water, hornworts, fish and snails, using a radiotracer technique. Concentrations of ceria in the samples at regular time intervals were measured. Ceria nanoparticles were readily removed from the water column and partitioned between different organisms. Both snail and fish have fast absorption and clearance abilities. Hornwort has the highest bioaccumulation factors. At the end of the experiment, sediments accumulated most of the nanoparticles with a recovery of 75.7 ± 27.3% of total ceria nanoparticles, suggesting that sediments are major sinks of ceria nanoparticles. © 2012 Elsevier Ltd.
Author keywords:
Aquatic ecosystem; Bioavailability; Ceria nanoparticles; Distribution; Radiotracer technique
Indexed keywords:
Aquatic ecosystem; Bioavailability; Ceria nanoparticles; Distribution; Radiotracer techniques
Engineering controlled terms: Biochemistry; Cerium compounds; Ecosystems; Fish; Radioactive tracers; Sedimentology; Sediments
Engineering main heading: Nanoparticles
EMTREE drug terms: cerium oxide; nanoparticle; tracer; water
GEOBASE Subject Index: absorption; aquatic ecosystem; bioaccumulation; bioavailability; bryophyte; cerium; ecosystem modeling; environmental fate; environmental impact; fish; health impact; metabolism; nanotechnology; oxide; particle size; pollution exposure; sediment chemistry; snail; tracer; water quality
EMTREE medical terms: aquatic environment; article; bioaccumulation; controlled study; drug bioavailability; drug distribution; fish; hornwort; nonhuman; sediment; snail
MeSH: Animals; Aquatic Organisms; Biological Availability; Cerium; Cerium Radioisotopes; Ecosystem; Metal Nanoparticles; Nanotechnology; Oxides; Radioactive Tracers; Safety; Tissue Distribution
Medline is the source for the MeSH terms of this document.
Species Index: Anthocerotophyta; Gastropoda
Chemicals and CAS Registry Numbers: cerium oxide, 11129-18-3, 1306-38-3, 1345-13-7; water, 7732-18-5; Cerium, 7440-45-1; Cerium Radioisotopes; Oxides; Radioactive Tracers
ISSN: 00456535 
CODEN: CMSHA
Source Type: Journal 
Original language: English
DOI: 10.1016/j.chemosphere.2012.05.044 
PubMed ID: 22694776
**

Ahn, J.-H., Kim, H.-S., Lee, K.J., Jeon, S., Kang, S.J., Sun, Y., Nuzzo, R.G., (...), Rogers, J.A.
Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials
(2006) Science, 314 (5806), pp. 1754-1757. 
Cited 260 times.
doi: 10.1126/science.1132394
·       View at Publisher

2
Biswas, P., Wu, C.-Y.
Nanoparticles and the environment
(2005) Journal of the Air and Waste Management Association, 55 (6), pp. 708-746. 
Cited 175 times.
·       View at Publisher

3
Bolsunovskij, A.Ya., Ermakov, A.I., Burger, M., Degermendzhy, A.G., Sobolev, A.I.

4
Dawson, T.L.
Nanomaterials for textile processing and photonic applications
(2008) Coloration Technology, 124 (5), pp. 261-272. 
Cited 14 times.
doi: 10.1111/j.1478-4408.2008.00151.x
·       View at Publisher

5
Derfus, A.M., Chan, W.C.W., Bhatia, S.N.
Probing the Cytotoxicity of Semiconductor Quantum Dots
(2004) Nano Letters, 4 (1), pp. 11-18. 
Cited 1343 times.
doi: 10.1021/nl0347334
·       View at Publisher

6
Diegoli, S., Manciulea, A.L., Begum, S., Jones, I.P., Lead, J.R., Preece, J.A.
Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules
(2008) Science of the Total Environment, 402 (1), pp. 51-61. 
Cited 58 times.
doi: 10.1016/j.scitotenv.2008.04.023
·       View at Publisher

7
Ferry, J.L., Craig, P., Hexel, C., Sisco, P., Frey, R., Pennington, P.L., Fulton, M.H., (...), Shaw, T.J.
Transfer of gold nanoparticles from the water column to the estuarine food web
(2009) Nature Nanotechnology, 4 (7), pp. 441-444. 
Cited 72 times.
doi: 10.1038/nnano.2009.157
·       View at Publisher

8
Handy, R.D., Henry, T.B., Scown, T.M., Johnston, B.D., Tyler, C.R.
Manufactured nanoparticles: Their uptake and effects on fish - A mechanistic analysis
(2008) Ecotoxicology, 17 (5), pp. 396-409. 
Cited 81 times.
doi: 10.1007/s10646-008-0205-1
·       View at Publisher

9
Handy, R.D., Von Der Kammer, F., Lead, J.R., Hassellöv, M., Owen, R., Crane, M.
The ecotoxicology and chemistry of manufactured nanoparticles
(2008) Ecotoxicology, 17 (4), pp. 287-314. 
Cited 216 times.
doi: 10.1007/s10646-008-0199-8
·       View at Publisher

10
Hardman, R.
·       View at Publisher

11
Haven, D.S., Morales-Alamo, R.
Aspects of biodeposition by oysters and other invertebrate filter feeders
(1966) Limnol.
Oceanogr., 11, pp. 487-498. Cited 79 times.
·        

12
Van Hoecke, K., Quik, J.T.K., Mankiewicz-Boczek, J., De Schamphelaere, K.A.C., Elsaesser, A., Van Der Meeren, P., Barnes, C., (...), Janssen, C.R.
Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests
(2009) Environmental Science and Technology, 43 (12), pp. 4537-4546. 
Cited 76 times.
http://pubs.acs.org/doi/pdfplus/10.1021/es9002444
doi: 10.1021/es9002444
·       View at Publisher

13
Howard, A.G.
On the challenge of quantifying man-made nanoparticles in the aquatic environment
(2010) Journal of Environmental Monitoring, 12 (1), pp. 135-142. 
Cited 22 times.
doi: 10.1039/b913681a
·       View at Publisher

14
Johnston, B.D., Scown, T.M., Moger, J., Cumberland, S.A., Baalousha, M., Linge, K., Van Aerle, R., (...), Tyler, C.R.
Bioavailability of nanoscale metal oxides TiO2, CeO2, and ZnO to fish
(2010) Environmental Science and Technology, 44 (3), pp. 1144-1151. 
Cited 60 times.
http://pubs.acs.org/doi/pdfplus/10.1021/es901971a
doi: 10.1021/es901971a
·       View at Publisher

15
Kennedy, A.J., Hull, M.S., Steevens, J.A., Dontsova, K.M., Chappell, M.A., Gunter, J.C., Weiss Jr., C.A.
Factors influencing the partitioning and toxicity of nanotubes in the aquatic environment
(2008) Environmental Toxicology and Chemistry, 27 (9), pp. 1932-1941. 
Cited 50 times.
doi: 10.1897/07-624.1
·       View at Publisher

16
Ostroumov, S.A., Kolesov, G.M.
The aquatic macrophyte Ceratophyllum demersum immobilizes Au nanoparticles after their addition to water
(2010) Doklady Biological Sciences, 431 (1), pp. 124-127.
doi: 10.1134/S0012496610020158
·       View at Publisher

17
Lu, K., Zhang, Z., He, X., Ma, Y., Zhou, K., Zhang, H., Bai, W., (...), Chai, Z.
Bioavailability and distribution and of ceria nanoparticles in simulated aquatic ecosystems, quantification with a radiotracer technique
(2010) Journal of Nanoscience and Nanotechnology, 10 (12), pp. 8658-8662. 
Cited 3 times.
doi: 10.1166/jnn.2010.2494
·       View at Publisher

18
Masui, T., Ozaki, T., Machida, K.-I., Adachi, G.-Y.
Preparation of ceria-zirconia sub-catalysts for automotive exhaust cleaning
(2000) Journal of Alloys and Compounds, 303-304, pp. 49-55. 
Cited 65 times.
·       View at Publisher

19
Quik, J.T.K., Lynch, I., Hoecke, K.V., Miermans, C.J.H., Schamphelaere, K.A.C.D., Janssen, C.R., Dawson, K.A., (...), Meent, D.V.D.
Effect of natural organic matter on cerium dioxide nanoparticles settling in model fresh water
(2010) Chemosphere, 81 (6), pp. 711-715. 
Cited 14 times.
doi: 10.1016/j.chemosphere.2010.07.062
·       View at Publisher

20
Smith, C.J., Shaw, B.J., Handy, R.D.
·       View at Publisher

21
Thill, A., Zeyons, O., Spalla, O., Chauvat, F., Rose, J., Auffan, M., Flank, A.M.
Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism
(2006) Environmental Science and Technology, 40 (19), pp. 6151-6156. 
Cited 167 times.
doi: 10.1021/es060999b
·       View at Publisher

22
Weinberg, H., Galyean, A., Leopold, M.
Evaluating engineered nanoparticles in natural waters
(2011) TrAC - Trends in Analytical Chemistry, 30 (1), pp. 72-83. 
Cited 25 times.
doi: 10.1016/j.trac.2010.09.006
·       View at Publisher

23
Yabe, S., Momose, S.
Cerium dioxide-silica complex: a novel, non-reactive and transparent UV absorber for cosmetics
(1998) J. Soc.
Cosmet. Chem. Jpn., 32, pp. 372-378. Cited 34 times.
·       View at Publisher

24
Zhang, H., He, X., Zhang, Z., Zhang, P., Li, Y., Ma, Y., Kuang, Y., (...), Chai, Z.
Nano-CeO2 exhibits adverse effects at environmental relevant concentrations
(2011) Environmental Science and Technology, 45 (8), pp. 3725-3730. 
Cited 17 times.
doi: 10.1021/es103309n
·       View at Publisher

25
Zhang, Y., Chen, Y., Westerhoff, P., Crittenden, J.
Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles
(2009) Water Research, 43 (17), pp. 4249-4257. 
Cited 67 times.
doi: 10.1016/j.watres.2009.06.005
·       View at Publisher

26
Zhang, Z.Y., Zhao, Y.L., Chai, Z.F.
Applications of radiotracer techniques for the pharmacology and toxicology studies of nanomaterials
(2009) Chinese Science Bulletin, 54 (2), pp. 173-182. 
Cited 9 times.
doi: 10.1007/s11434-009-0016-7
·       View at Publisher

27
Zhang, Z., Zhao, Y., Chai, Z.
Radioanalytical methods in nanotoxicology studies
(2011) Progress in Chemistry, 23 (7), pp. 1527-1533.
·       View at Publisher

28
Zhu, X., Wang, J., Zhang, X., Chang, Y., Chen, Y.
Trophic transfer of TiO2 nanoparticles from daphnia to zebrafish in a simplified freshwater food chain
(2010) Chemosphere, 79 (9), pp. 928-933. 
Cited 31 times.
doi: 10.1016/j.chemosphere.2010.03.022
·       View at Publisher

  Zhang, Z.; Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, And Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, The Chinese Academy of Sciences, P.O. Box 918, Beijing 100049, China; email:zhangzhy@ihep.ac.cn 
**