![]() |
Microscopic view of Planococcus halocryophilus OR1 [Credit: McGill University] |
"We believe that this bacterium lives in very thin veins of very salty water found within the frozen permafrost on Ellesmere Island," explains Whyte. "The salt in the permafrost brine veins keeps the water from freezing at the ambient permafrost temperature (~-16ºC), creating a habitable but very harsh environment. It's not the easiest place to survive but this organism is capable of remaining active (i.e. breathing) to at least -25ºC in permafrost."
In order to understand what it takes to be able to do so, Mykytczuk, Whyte and their colleagues studied the genomic sequence and other molecular traits of P. halocryophilus OR1. The researchers found that the bacterium adapts to the extremely cold, salty conditions in which it is found thanks to significant modifications in its cell structure and function and increased amounts of cold-adapted proteins. These include changes to the membranes that envelop the bacterium and protect it from the hostile environment in which it lives.
![]() |
In the field on Ellesmere Island [Credit: McGill University] |
The researchers believe however, that such microbes may potentially play a harmful role in extremely cold environments such as the High Arctic by increasing carbon dioxide emissions from the melting permafrost, one of the results of global warming.
Whyte is delighted with the discovery and says with a laugh, "I'm kind of proud of this bug. It comes from the Canadian High Arctic and is our cold temperature champion, but what we can learn from this microbe may tell us a lot about how similar microbial life may exist elsewhere in the solar system."
This research was funded by: Natural Sciences and Engineering Research Council of Canada CREATE Canadian Astrobiology Training Program, Canadian Space Agency, the Polar Continental Shelf Program, Canada Research Chairs Program, and the Canada Foundation for Innovation.
Source: McGill University [May 23, 2013]