![]() |
| Toxic seas could have delayed the spread of complex life [Credit: Shutterstock] |
The model, developed by researchers at the University of Exeter in collaboration with Plymouth Marine Laboratory, University of Leeds, UCL (University College London) and the University of Southern Denmark, reveals the sensitivity of the early oceans to the global nitrogen cycle. It shows how the availability of nitrate, and feedbacks within the global nitrogen cycle, would have controlled the shifting of the oceans between the two oxygen-free states -- potentially restricting the spread of early complex life.
Dr Richard Boyle from the University of Exeter said: "Data from the modern ocean suggests that even in an oxygen-poor ocean, this apparent global-scale interchange between sulphidic and non-sulphidic conditions is difficult to achieve. We've shown here how feedbacks arising from the fact that life uses nitrate as both a nutrient, and in respiration, controlled the interchange between two ocean states. For as long as sulphidic conditions remained frequent, Earth's oceans were inhospitable towards complex life."
Today, an abundance of nitrate, in the context of an oxygenated ocean, prevents a reversion to the inhospitable environment that inhibited early life. Determining how Earth's oceans have established long-term stability helps us to understand how modern oceans interact with life and also sheds light on the sensitivity of oceans to changes in composition.
Source: University of Exeter [February 28, 2013]






