![]() |
| Adult Peregrine Falcon with prey [Credit: Wiki Commons] |
In this study, researchers focused on the evolutionary basis of predatory adaptations underlying peregrine and saker. They conducted whole genome sequencing and assembled the high quality ~1.2 Gb reference genomes for each falcon species. Phylogenic analysis suggested that the two falcon species might diverged 2.1 million years ago.
Comparing with chicken and zebra finch, researchers found the transposable element composition of falcons was most similar to that of zebra finch. Large segmental duplications in falcons are less frequent than that in chicken and zebra finch, and comprise less than 1% of both falcon genomes. They also found that a gene expansion in the olfactory receptor γ-c clade in chicken and zebra finch is not present in falcons, possibly reflecting their reliance on vision for locating prey.
Observing genome-wide rapid evolution for both falcons, chicken, zebra finch and turkey, researchers found that the nervous system, olfaction and sodium ion trans-port have evolved rapidly in falcons, and also the evolutionary novelties in beak development related genes of falcons and saker-unique arid-adaptation related genes.
Shengkai Pan, bioinformatics expert from BGI, said, "The two falcon genomes are the first predatory bird genome published. The data presented in this study will advance our understanding of the adaptive evolution of raptors as well as aid the conservation of endangered falcon species."
Source: BGI Shenzhen [March 25, 2013]






