![]() |
| Researchers have provided a glimpse at genetic expression in long-extinct fossil dinosaurs [Credit: Web] |
Schweitzer's next step was to find out if the star-shaped cellular structures within the fibrous matrix were osteocytes, or bone cells. Using techniques including microscopy, histochemistry and mass spectrometry, Schweitzer demonstrates that these cellular structures react to specific antibodies, including one – a protein known as PHEX – that is found in the osteocytes of living birds. The findings appear online in Bone and were presented last week at the annual meeting of the Society of Vertebrate Paleontology.
![]() |
| T.rex (B), B. canadensis (E) and ostrich osteocytes (H) showing positive response to propidium iodide, a DNA intercalating dye [Credit: Dr. Mary Schweitzer, NC State University] |
Schweitzer and her team also tested for the presence of DNA within the cellular structures, using an antibody that only binds to the "backbone" of DNA. The antibody reacted to small amounts of material within the "cells" of both the T. rex and the B. canadensis. To rule out the presence of microbes, they used an antibody that binds histone proteins, which bind tightly to the DNA of everything except microbes, and got another positive result. They then ran two other histochemical stains which fluoresce when they attach to DNA molecules. Those tests were also positive. These data strongly suggest that the DNA is original, but without sequence data, it is impossible to confirm that the DNA is dinosaurian.
"The data thus far seem to support the theory that these structures can be preserved over time," Schweitzer says. "Hopefully these findings will give us greater insight into the processes of evolutionary change."
Source: North Carolina State University [October 23, 2012]







