![]() |
| BYU soil scientist Richard Gill studies the effects rising levels of CO2 have on soils [Credit: Image courtesy of Brigham Young University] |
What they found, published in the current issue of Nature Climate Change, is that the interaction between plants and soils controls how ecosystems respond to rising levels of CO2 in the atmosphere.
"As we forecast what the future is going to look like, with the way we've changed the global atmosphere, often times we overlook soil," said BYU biology professor Richard Gill, a coauthor on the study. "The soils matter enormously and the feedbacks that occur in the soil are ultimately going to control the atmosphere."
The research shows that even in the absence of climate change, humans are impacting vital ecosystems as the composition of Earth's atmosphere changes. They observed that changes in atmospheric CO2 caused changes in plant species composition and the availability of water and nitrogen.
Researchers worry that if the ability of plants and soils to absorb carbon becomes saturated over time then CO2 in the atmosphere will increase much more quickly than it has in the past.
"We don't just have to be concerned about climate change, we have to be concerned about the other changes in atmospheric chemistry," Gill said. "Globally we're changing the Earth's atmosphere and we know that is going to influence the systems we depend on. To forecast those changes, you have to understand deeply what is happening in soils."
The BYU-Duke team has been studying the effects of increased carbon dioxide in soils for the last 12 years.
BYU biologist Richard Gill joined colleagues at Duke and the USDA's Agricultural Research Service in a study published in the current issue of Nature Climate Change that looks at the role of soil in the future of earth's atmosphere. The researchers found that the interaction between plants and soils controls how ecosystems respond to rising levels of carbon dioxide in the atmosphere.
Gill's particular role in the ongoing research is to monitor and measure the changes in the nitrogen cycle and carbon dynamics due to atmospheric CO2. To do this, Gill brings soil samples from a Texas research site back to his BYU lab and does laboratory chemistry on the soil.
Naturally, when a plant dies the nitrogen in that plant is reabsorbed back into the soil. Gill is finding that increased CO2 may help plants grow well at first, but it causes the nitrogen to be tied up in "plant litter" and microbes that usually chew it up and release it back into the soil are struggling to do so.
"The big takeaway is that humanity is changing the Earth's atmosphere; we've increased atmospheric CO2 by almost 50 percent since the industrial revolution and these changes have cascading effects in both natural and managed systems," Gill said. "Whether those are changes in how plants use water or changes in soil fertility, these are byproducts of the choices we make."
Philip A. Fay, a research ecologist with the USDA's Agricultural Research Service, was the lead author on the study.
Source: Brigham Young University [June 12, 2012]






