![]() |
The Galactic globular cluster M80 in the constellation Scorpius contains several hundred thousand stars [Credit: HST/NASA/ESA] |
The researchers ran simulations of isolated and colliding galaxies, in which they included a model for the formation and destruction of stellar clusters. When galaxies collide, they often generate spectacular bursts of star formation ("starbursts") and a wealth of bright, young stellar clusters of many different sizes. As a result it was always thought that the total number of star clusters increases during starbursts. But the Dutch-German team found the opposite result in their simulations.
While the very brightest and largest clusters were indeed capable of surviving the galaxy collision due to their own gravitational attraction, the numerous smaller clusters were effectively destroyed by the rapidly changing gravitational forces that typically occur during starbursts due to the movement of gas, dust and stars. The wave of starbursts came to an end after about 2 billion years and the researchers were surprised to see that only clusters with high numbers of stars had survived. These clusters had all the characteristics that should be expected for a young population of globular clusters as they would have looked about 11 billion years ago.
Dr. Kruijssen comments: "It is ironic to see that starbursts may produce many young stellar clusters, but at the same time also destroy the majority of them. This occurs not only in galaxy collisions, but should be expected in any starburst environment. In the early Universe, starbursts were commonplace – it therefore makes perfect sense that all globular clusters have approximately the same large number of stars. Their smaller brothers and sisters that didn't contain as many stars were doomed to be destroyed."
The movie shows the formation and evolution of the star cluster population in one of our galaxy merger simulations (ID 1m11, see the table in the paper). The surface density of the gas is displayed in greyscale, while the dots indicate particles that contain star clusters. Their colours reflect the ages of the clusters as indicated by the legend, and each of their sizes reflects the mass of the most massive cluster within that particle.
According to the simulations, most of the star clusters were destroyed shortly after their formation, when the galactic environment was still very hostile to the young clusters. After this episode ended, the surviving globular clusters have lived quietly until the present day.
The researchers have further suggestions to test their ideas. Dr. Kruijssen continues: "In the nearby Universe, there are several examples of galaxies that have recently undergone large bursts of star formation. It should therefore be possible to see the rapid destruction of small stellar clusters in action. If this is indeed found by new observations, it will confirm our theory for the origin of globular clusters."
The simulations suggest that most of a globular cluster's traits were established when it formed. The fact that globular clusters are comparable everywhere then indicates that the environments in which they formed were very similar, regardless of the galaxy they currently reside in. In that case, Dr. Kruijssen believes, they can be used as fossils to shed more light on the conditions in which the first stars and galaxies were born.
Source: Royal Astronomical Society [February 14, 2012]